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Competition in Pricing Algorithms†

By Zach Y. Brown and Alexander MacKay*

We document new facts about pricing technology using high- 
frequency data, and we examine the implications for competition. 
Some online retailers employ technology that allows for more fre-
quent price changes and automated responses to price changes by 
rivals. Motivated by these facts, we consider a model in which firms 
can differ in pricing frequency and choose pricing algorithms that 
are a function of rivals’ prices. In competitive (Markov perfect) equi-
librium, the introduction of simple pricing algorithms can increase 
price levels, generate price dispersion, and exacerbate the price 
effects of mergers. (JEL D21, D22, D43, G34, L13, L81)

Increasingly, retailers have access to better pricing technology, especially in 
online markets. In particular, pricing algorithms are becoming more prevalent. 

Algorithms can change pricing behavior by enabling firms to update prices more 
frequently and automate pricing decisions. Thus, firms can commit to pricing strat-
egies that react to price changes by competitors. This may have important implica-
tions for price competition relative to standard oligopoly models in which firms set 
prices simultaneously. Do pricing algorithms lead to higher prices?

In this paper, we present new facts about pricing behavior that highlight the above 
features of pricing algorithms. Using a novel dataset of  high-frequency prices from 
large online retailers, we document pricing patterns that are (i) consistent with the 
use of automated software and (ii) inconsistent with the standard empirical model of 
simultaneous  price-setting behavior. Retailers update prices at regular intervals, but 
these intervals differ across firms, allowing some retailers to adjust prices at higher 
frequencies than their rivals. Firms with faster pricing technology quickly respond 
to price changes by slower rivals, indicating commitment to automated strategies 
that depend on rivals’ prices. Finally, we examine price dispersion, and we show that 
price differences across retailers are related to asymmetries in pricing technology.
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Motivated by these facts, we introduce a model of price competition that incor-
porates increased pricing frequency and  short-run commitment through the use of 
algorithms. Our model allows for asymmetric technology among firms. We show 
that asymmetry in pricing technology can fundamentally shift equilibrium behav-
ior: if one firm adopts superior technology, all firms can obtain higher prices. If all 
firms adopt automated  high-frequency algorithms, collusive prices can be supported 
without the use of traditional collusive strategies. Thus, we illustrate how pric-
ing algorithms can generate supracompetitive prices through novel,  non-collusive 
mechanisms.1 Frequency, commitment, and asymmetry in pricing technology allow 
firms to support higher prices in competitive (Markov perfect) equilibrium.

We use our model to analyze the impacts of pricing technology in oligopoly 
settings. We show that asymmetric pricing technology can increase price levels, 
exacerbate the price effects of mergers, and generate price dispersion. In particular, 
the model can rationalize why firms that have  higher-frequency pricing have lower 
prices than their competitors, even when the firms are otherwise identical. Thus, our 
model provides a  supply-side explanation for price dispersion, complementing the 
 demand-side explanations that are emphasized in the literature, such as the presence 
of search frictions. We use a counterfactual simulation to quantify the impacts of 
asymmetric pricing technology in our empirical setting. Overall, our results show 
that the competitive impacts of algorithms can be quite broad.

We begin by highlighting the key features of pricing algorithms used by online 
retailers (Section I). We present three stylized facts using  high-frequency price data 
for  over-the-counter allergy medications for the five largest online retailers in the 
category. First, we document heterogeneity in pricing technology. Two firms have 
 high-frequency algorithms that change prices within an hour, one firm updates prices 
once per day, and the remaining two have weekly pricing technology, updating their 
prices early every Sunday morning. Second, we show that the fastest firms quickly 
react to price changes by slower rivals, consistent with the use of automated pric-
ing algorithms that monitor rivals’ prices and follow a  pre-specified strategy. Third, 
we show that asymmetric pricing technology is associated with asymmetric prices. 
Relative to the firm with the fastest pricing technology, the firm with daily pricing 
technology sells the same products at prices that are 10 percent higher, whereas the 
firms with weekly pricing technology sell those products at prices that are approxi-
mately 30 percent higher. These facts are inconsistent with the widespread assumption 
that firms have essentially symmetric  price-setting technology in online markets.

We introduce an economic framework to capture these features of online price 
competition in Section  II. We study competitive equilibria when firms may have 
 high-frequency algorithms that condition on rivals’ prices. Specifically, we intro-
duce a model that allows firms to have different pricing frequencies and to com-
mit to a pricing strategy that depends on rivals’ prices. We show that asymmetry 
in pricing technology—either in frequency or commitment—yields prices that lie 
between the simultaneous (Bertrand) and sequential (Stackelberg) equilibria and 

1 The existing literature has focused on whether algorithms can facilitate collusion, almost exclusively assum-
ing that firms have symmetric,  price-setting technology (e.g., Calvano et al. 2020;  Miklós-Thal and Tucker 2019; 
Salcedo 2015).
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nests both as special cases. When prices are strategic complements, as is typical in 
empirical models of demand, the faster firm has lower prices and higher profits than 
the slower firm. Thus, our model provides a  supply-side explanation for the price 
dispersion observed in the data. We also show that, when firms can choose their 
pricing frequency, each firm has a unilateral profit incentive to choose more frequent 
or less frequent pricing than their rivals. Due to these incentives, asymmetric pricing 
frequency (and not simultaneous  price setting) is the equilibrium outcome when 
pricing frequency is endogenous.

In Section III, we analyze the case where all firms can condition on rivals’ prices. 
We derive a  one-shot competitive game in which firms submit pricing algorithms 
rather than prices. We use the  one-shot game to show that symmetric  short-run com-
mitments, in the form of automated pricing, can also generate higher prices. To 
demonstrate the significant implications of this dimension of algorithmic compe-
tition, we focus on equilibrium pricing strategies that, in some sense, “look com-
petitive.” That is, we eliminate collusive strategies that rely on  cooperate-or-punish 
schemes. Even with these restrictions, pricing algorithms can increase prices rela-
tive to the  Bertrand-Nash equilibrium. Supracompetitive prices, including the fully 
collusive prices, can be supported with algorithms that are simple linear functions 
of rivals’ prices.2 In this way algorithms fundamentally change the pricing game, 
providing a means to increase prices without resorting to collusive behavior.

We also address the question of whether pricing algorithms can arrive at com-
petitive (Bertrand) prices. Our model provides a stark negative result: all firms will 
not choose  price-setting  best-response (Bertrand reaction) functions in equilibrium. 
Further, if any firm uses an algorithm that depends on a rival’s price, Bertrand prices 
do not arise in equilibrium. Intuitively, our results are supported by the follow-
ing logic: A  superior-technology firm commits to best respond to whatever price 
is offered by its rivals, and its investments in frequency or automation make this 
commitment credible. The rivals take this into account, softening price competition. 
Our model nests several different theoretical approaches that were developed prior 
to the advent of pricing algorithms and have largely been dismissed in the modern 
literature, including conjectural variations. We highlight these connections below.

In Section IV, we consider the impact of algorithms in oligopoly settings, focus-
ing on the case of asymmetric technology. As in the duopoly case, firms with supe-
rior pricing technology have relatively lower prices, and all prices may be elevated 
relative to the  Bertrand-Nash equilibrium. We then explore the implications for the 
price effects of mergers. In our model, asymmetries in pricing technology generate 
higher  post-merger prices relative to the  post-merger  Bertrand-Nash equilibrium. 
With asymmetric technology, mergers can increase or reduce price dispersion across 
firms, depending on the relative technology of the merging firms.

To understand potential impacts in our empirical setting, we simulate counter-
factual prices using an oligopoly model that is calibrated to aggregate prices and 

2 In practice, it is typical for algorithms to have a linear adjustment based on the average price of a set of com-
petitors. In one interesting example a retailer on Amazon.com set its price for a book to be 0.9983 times its rival’s 
price, and the rival set its price to be 1.270589 times the retailer’s price. The price of the book rose to nearly $24 
million. This, we note, was not an equilibrium. See “How A Book About Flies Came To Be Priced $24 Million On 
Amazon,” Wired, April 27, 2011. https://www.wired.com/2011/04/amazon-flies-24-million/.

http://Amazon.com
https://www.wired.com/2011/04/amazon-flies-24-million/
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shares in our data. We use a model of demand that allows for flexible substitution 
patterns among retailers and provides a tractable empirical approach to modeling 
 supply-side competition with algorithms. With the obtained demand parameters, we 
simulate a counterfactual  Bertrand-Nash equilibrium in which firms have simulta-
neous  price-setting technology. Relative to the Bertrand equilibrium, the calibrated 
model predicts that algorithmic competition increases average prices by 5 percent 
across the 5 firms. This corresponds to a 10 percent increase in profits and a 4 per-
cent decrease in consumer surplus. The effect on markups and profits is especially 
large for firms with superior pricing technology, i.e., those with the ability to quickly 
adjust prices. In the calibrated model mergers generate larger price increases with 
algorithmic technology. These exercises provide a first step toward quantifying the 
effects of heterogeneous pricing technology.

Online markets have allowed retailers to gather  high-frequency data on rivals’ 
prices and react quickly through the use of automated software. Indeed, these are 
key features advertised by  third-party providers of pricing algorithms.3 Evidence 
suggests that algorithms are becoming more widespread as online retailing con-
tinues to grow (Cavallo 2019). The increased prevalence of pricing algorithms has 
drawn significant attention from competition authorities.4

Overall, our results imply that pricing algorithms can support  higher-price equi-
libria, even when firms act competitively. Our empirical analysis shows price pat-
terns consistent with the model and suggests that pricing algorithms can have an 
economically meaningful effect on markups. Thus, if policymakers are concerned 
that algorithms will raise prices, then the concern is more broad than that of col-
lusion. Of course, algorithms may also have several benefits, such as the ability 
to more efficiently respond to  time-varying demand. In light of these issues, we 
briefly discuss implications for policymakers in Section  V. Though we focus on 
competitive equilibria, our study also has implications for collusion. By increas-
ing competitive prices and profits, algorithms may make punishment less severe in 
a collusive scheme, reducing the likelihood of collusion. Additionally, our model 
explicitly features a new dimension in the strategy space, allowing firms to change 
pricing technology as either a substitute or a complement to the pursuit of collusion.

Related Literature.—We contribute to the nascent literature studying the impacts 
of algorithms on prices. We present a new model of price competition to capture fea-
tures of algorithms—frequency and commitment—that have not been studied previ-
ously. The existing literature has focused on the price effects of learning algorithms 
(Salcedo 2015; Calvano et al. 2020; Johnson, Rhodes, and Wildenbeest 2021; Asker, 
Fershtman, and Pakes 2022) or prediction algorithms ( Miklós-Thal and Tucker 
2019; O’Connor and Wilson 2021) in the context of a standard simultaneous price 
(or quantity) game. This literature focuses on how learning or prediction algorithms 

3 For instance, ChannelAdvisor advertises its automated pricing product as “constantly monitoring top com-
petitors on the market.” Repricer.com “reacts to changes your competitors make in 90 seconds.” Intelligence Node 
allows retailers to “have eyes on competitor movements at all times and … automatically update their prices.”

4 See, for instance, the UK Competition and Markets Authority’s 2018 report, “Pricing Algorithms” and 
Germany’s “ Twenty-second Biennial Report by the Monopolies Commission.” Thus far, government authorities 
have focused on the potential for algorithms to facilitate collusion.

http://Repricer.com
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affect the sophistication of players and their ability to collude.5 By contrast, we 
examine how pricing algorithms change the nature of a pricing game, focusing on 
Markov perfect equilibria as in Maskin and Tirole (1988b).6 Our model generates a 
new set of equilibrium strategies and outcomes that can be supported by algorithms.

There has been little empirical evidence on the pricing strategies used by major 
online retailers. Using surveys and case studies, competition authorities have noted 
that online firms may collect information about the prices of competitors and use the 
information to adjust their own prices.7 Studies in the computer science literature 
have examined pricing rules employed by  third-party sellers that use rivals’ prices as 
an input (e.g., Chen, Mislove, and Wilson 2016). Our novel  high-frequency dataset 
allows us to document, systematically, new empirical facts about the pricing behav-
ior of online competitors. In an offline context a recent paper by Assad et al. (2022) 
examines whether algorithms change pricing strategies and increase prices in retail 
gasoline markets.8

The evidence that firms adjust prices at differing frequencies complements the 
literature in macroeconomics on menu costs and sticky prices. In offline markets the 
literature has shown heterogeneity in the frequency of price changes across sectors 
(e.g., Klenow and Malin 2010; Nakamura and Steinsson 2008) and has examined the 
implications for monetary policy (Nakamura and Steinsson 2010; Gorodnichenko 
and Weber 2016). A more recent literature has shown that online firms update prices 
at higher frequency than offline markets, with implications for  pass-through (e.g., 
Gorodnichenko and Talavera 2017; Cavallo 2019). Relative to these papers, our data 
are at a higher frequency (hourly), allowing us to study differences in underlying 
technology across competing firms.

Our findings also contribute to the broader literature on price dispersion in online 
markets by providing an explanation for differences in prices for identical products 
across firms. Despite the fact that online competition is thought to reduce search 
costs and expand geographic markets, substantial price dispersion has been doc-
umented (e.g., Baye, Morgan, and Scholten 2004; Ellison and Ellison 2005). An 
empirical literature has focused on  demand-side features such as search frictions, 
but little attention has been paid to firm conduct.9 One exception is Ellison, Snyder, 
and Zhang (2018), who examine managerial inattention and price dispersion in 
an online marketplace in 2000 and 2001, prior to the widespread use of pricing 
 algorithms. Our results suggest that differences in pricing technology across firms 
lead to persistent differences in prices for identical products.

We provide a new framework to examine the effects of pricing technology on 
prices, contributing to the empirical literature that studies supracompetitive prices 

5 Klein (2021) considers the same question but in the  alternating-move setting of Maskin and Tirole (1988b).
6 Maskin and Tirole (1988b) show that higher prices can result in a duopoly game where firms set prices in 

alternate periods using strategies that rely exclusively on  payoff-relevant variables. Our analysis complements their 
work by showing how higher prices may be obtained in Markov perfect equilibrium in a different economic envi-
ronment—one in which algorithms provide variation in pricing frequency and enable  short-run commitment.

7 See, for instance, the European Commission’s 2017 report, “ E-commerce Sector Inquiry.”
8 Assad et al. (2022) find evidence for price effects only when both firms in duopoly markets adopt superior 

pricing technology, which suggests that the mechanism in their setting may be collusion or symmetric commitment.
9 Work examining online search frictions includes Hong and  Shum (2006); Brynjolfsson, Dick, and Smith 

(2010); and De los Santos, Hortaçsu, and Wildenbeest (2012).
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(e.g., Porter 1983; Nevo 2001; Miller and  Weinberg 2017; Byrne and  de Roos 
2019). Our results suggest that the mode of competition can lead to meaningful price 
increases without the need for collusion. Previous empirical studies of supracom-
petitive prices have exclusively considered stage games with symmetric technology 
where firms choose actions (price or quantity) simultaneously; this framework has 
been the basis for antitrust analysis as well.10 Our analysis takes a first step toward 
incorporating heterogeneous pricing technology and quantifying its implications.

We argue that a key feature of pricing algorithms is the ability to condition on the 
prices of rivals. This mechanism relates to a large class of models where firms inter-
nalize the reactions of their rivals, including conjectural variations (Bowley 1924) 
and the classic Stackelberg model. The  real-world applicability of these models has 
been subject to a long debate (e.g., Fellner 1949). The conjectural variations model 
has fallen out of favor, likely because consistent conjectures other than Cournot are 
difficult to rationalize (Daughety 1985; Lindh 1992). Models with sequential behav-
ior have been dismissed as unrealistic for empirical settings because it requires the 
assumption that one firm can honor a ( suboptimal) commitment while the other 
reacts. For this reason, applied researchers and antitrust authorities have almost uni-
versally assumed that firms play a simultaneous Bertrand or Cournot game. We 
argue that such commitments are credible, made possible by investments in dif-
ferential pricing technology. Algorithms provide a natural mechanism for the type 
of technological commitment discussed in Maskin and Tirole (1988a). Thus, one 
interpretation of our model is that it provides a new foundation for theoretical results 
arising in this older literature. By nesting these models under a common structure, 
we also provide a framework for firms to choose among different models of compe-
tition by changing their pricing technology.

The logic of how pricing algorithms lead to higher prices is related to how commit-
ment can lead to higher prices in other models, including the use of  price-matching 
guarantees (Salop 1986; Hay 1981; Moorthy and Winter 2006).11 Lazarev (2019) 
shows that higher prices can result when firms first commit to a restricted set of 
prices then choose from among those prices in a second stage. Conlon and Rao 
(2023) find that wholesalers selling a homogeneous product can set the collusive 
price in a competitive equilibrium when they are required to commit to a pricing 
schedule. Also related are models of supply function competition (Grossman 1981; 
Klemperer and Meyer 1989), in which firms with homogeneous products com-
mit to quantity schedules as a function of the ( endogenously determined) market 
price. By contrast, our model features differentiated products, and the algorithms 
respond to rivals’ (varying) prices, allowing for different equilibria in oligopoly. 
The  game-theoretic notion of commitment ties into a broader literature on strategic 
delegation that has been applied in diverse settings.12 We consider algorithms to be 

10 See, for instance, “Commentary On The Horizontal Merger Guidelines” by the US Department of Justice.
11 Hal Varian discussed the appeal of price matching in online markets in the August 24, 2000 New York Times 

article “When commerce moves online, competition can work in strange ways.” In a set of lab experiments, Deck 
and Wilson (2000, 2003) find that subjects who use automated  price-matching strategies obtain higher profits than 
those who manually set prices.

12 Fershtman and Judd (1987) and Sklivas (1987) show that, by giving managers a mixture of  revenue-based 
and  profit-based incentives, owners can commit to behavior that is not profit maximizing, leading to higher 
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an economic mechanism to make such commitments credible.13 Moreover, we are 
the first to link pricing algorithms to models with these features.

I. Algorithms and Pricing Behavior: Evidence

A. What Is an Algorithm?

Broadly speaking, an algorithm is a set of instructions that maps inputs to a desired 
set of outputs. Pricing algorithms used by online retailers can each be characterized 
as a formula to determine prices that is  pre-specified by a computer program. Many 
online retailers consider rivals’ prices to be a key input in these calculations. In 
general, an algorithm may depend on variables related to past, present, and future 
supply and demand conditions, including the past play of rivals or the outcomes of 
experiments. By using automated programs to collect this information and compute 
prices, firms can update prices at a higher frequency and place rules on pricing 
behavior. We investigate two key features of pricing algorithms that may change the 
nature of the pricing game relative to a human agent.

First, an algorithm lowers the cost of updating prices and facilitates a regular 
pricing frequency. Typically, firms use software to schedule pricing updates at reg-
ular intervals, e.g., once per day or every 15 minutes. The frequency with which a 
firm can update prices depends on investments in pricing technology, which may 
differ across firms. Algorithms facilitate both regular and more frequent updates, 
as software can better monitor rivals’ prices and can find the solution to a difficult 
pricing problem more efficiently than a human agent. For numerical calculations, 
human agents can be slow and  error prone, and they cannot be expected to maintain 
a regular pricing frequency.14 Large online retailers sell several thousand products; 
relying on humans to update all prices at regular intervals would be extremely costly.

Second, an algorithm provides a  short-run commitment device to a pricing strat-
egy. When an algorithm depends on rivals’ prices, it can autonomously react to price 
changes by rivals according to the formula encoded by the computer program. The 
program itself is typically updated at a lower frequency than it is used to set prices. 
Thus, in between updates to its algorithm, the firm changes prices based on a fixed 
set of rules. It is widely thought that humans lack this sort of commitment power 
(e.g., Maskin and Tirole 1988a). In other words, we typically expect human agents 
to be bound by an incentive compatibility constraint at every opportunity to set 
prices, whereas algorithms may not be.

Below, we present new empirical facts about pricing technology that demonstrate 
the importance of these two features of algorithms. We show that firms differ in 

prices. Bonanno and Vickers (1988) show that manufacturers can soften price competition by selling through an 
independent retailer, rather than one that is vertically integrated.

13 A related strand of literature deals with  one-shot games where players choose contracts (or commitment 
devices) that condition their actions on the strategies of the other players (Tennenholtz 2004; Kalai et al. 2010; 
Peters and Szentes 2012). In this literature (equilibrium) contracts are functions of the other players’ contracts. 
Tennenholtz (2004) gives the example of submitting a computer program that reads the rivals’ computer program 
and chooses an action accordingly. Another related concept is the cartel punishment device of Osborne (1976).

14 The study by Ellison, Snyder, and Zhang (2018) provides empirical evidence of human inefficiency along 
these dimensions.
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the frequency with which they change prices and that faster firms react to rivals’ 
price changes. We also find that faster firms have lower prices than slower firms. 
In Section II, we introduce an economic framework to capture these features and 
examine the effects on equilibrium prices.

B. Data

For our empirical analysis, we collect a dataset of hourly prices for  over-the-counter 
allergy drugs from five online retailers in the United States.15 The retailers are the 
five largest in the allergy category based on Google search data and are among the 
largest retailers overall by  e-commerce revenues.16 We have kept the identities of 
the retailers anonymous, calling them A, B, C, D, and E. For each of these retailers, 
allergy drugs represent an important product category. All five retailers sell products 
in many other categories, and four of the five have a large  in-store presence in addi-
tion to their online channel.

It is important to note that the retailers do not simply set uniform prices across 
both online and  brick-and-mortar channels. For example, Cavallo (2017) finds that 
online prices at drugstores differ 62 percent of the time from observed offline prices, 
and they are on average 1 percent lower. While prices may differ across a retailer’s 
 brick-and-mortar stores, prices on the websites were set uniformly for online shop-
pers across the country during our sample period.17

We focus on the seven brands of allergy drugs that are sold by all five retail-
ers: Allegra, Benadryl, Claritin, Flonase, Nasacort, Xyzal, and Zyrtec.18 We collect 
price information for all versions of the allergy drugs and define a product to be 
a  drug-brand-form-(variant-)size combination, e.g.,  Loratadine-Claritin-Tablet-20. 
Using this definition, the average retailer sells 59 distinct allergy products on aver-
age. This set of products provides a relatively straightforward set of competing prod-
ucts in which we can examine pricing technology in detail. However, we believe our 
analysis of firms’ pricing technology applies more broadly to other products sold by 
the retailers.

Our sample spans approximately one and a half years, from April 10, 2018 
through October 1, 2019. Collecting  high-frequency price data can be challenging. 
Websites change over time, there can be errors loading pages, and there are often 
other technical issues. During our sample period, we have relatively good coverage 
and observe the price for each product in 20 out of 24 hours on average. We take 
some steps to impute missing prices and identify outliers, which we describe in 
online Appendix C. Our final dataset has 3,606,956 price observations across the 5 
websites. Online Appendix Table C1 provides a tabulation of price observations for 
each retailer and brand.

15 The retailers are Amazon, Walmart, Target, CVS, and Walgreens.
16  E-commerce revenue is obtained from ecommerceDB (2019). Overall, these five retailers accounted for $6 

billion in  e-commerce revenues for personal care, which includes medicine, cosmetics, and personal care products.
17 Cavallo (2017) presents evidence of geographic variation across  brick-and-mortar stores within the same 

retail chain. Any geographic variation in prices across stores would guarantee that some customers will face differ-
ent prices online and offline.

18 While some retailers offer the same product from multiple  third-party sellers, our sample consists only of the 
primary version of each product. This is typically sold directly by the retailer.
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Daily summary statistics of our data are presented in Table 1. On average, we 
observe 59 products each day on each website, though retailer A carries more prod-
ucts than the other 4 retailers. While retailer E only sells 35 products in the category 
on average, retailer A sells 125. Prices vary across retailers, though it is important 
to note that the raw averages in the table reflect differences in available products. 
All of the retailers make large price adjustments over the sample period, with an 
average absolute price change of $1.91. However, some retailers change prices more 
often than others. On an average day retailer A changes the prices of 37 percent of 
its products, while retailer C only changes the prices of 0.8 percent of its products. 
Retailers D and E change the prices of 2 percent of products each day.

C. Three Facts about Online Prices

We now use a descriptive analysis of our dataset to document three stylized facts 
about pricing behavior in online markets.

Stylized Fact 1: Online retailers update prices at regular intervals. These 
intervals differ widely across firms.

To understand the pricing technology used by online retailers, we start by examin-
ing the time series for individual products. Figure 1 shows prices for  Xyzal-Tablet-80 
and  Claritin-Tablet-70. These two examples illustrate fundamentally different pric-
ing patterns across the five retailers. Retailer A often has high frequency price 
changes of a large magnitude. Retailer B also has  high-frequency price changes, 
although less often. Retailer C appears to adjust prices at a lower frequency, while D 
and E tend to have prices that remain constant for long periods.

The differences in frequency are systematic across all products offered by the 
retailers. To capture variation in each firm’s underlying pricing technology, we plot 
the density of price changes across all products by hour of the week in Figure 2. The 
results show important differences in when firms are able to update prices. Retailers 
A and B have price changes that are relatively uniformly distributed across all hours 
of the week. In fact, anecdotal evidence suggests that these retailers are able to 
adjust prices multiple times within an hour, with retailer A able to adjust prices at 

Table 1—Daily Statistics for Hourly Price Data

Statistic
Retailer

A
Retailer

B
Retailer

C
Retailer

D
Retailer

E
All

retailers

Count of products  124.9  41.3  49.9  42.5  35.1  58.7 
Observations per product  20.9  20.4  19.0  21.1  19.1  20.1 
Price: Mean  27.18  16.88  17.63  20.93  21.74  20.86 
Price: 10th percentile of products  9.75  6.93  5.53  6.88  7.50  7.32 
Price: 90th percentile of products  51.11  28.95  33.30  38.21  39.65  38.21 
Mean absolute price change  1.35  2.31  1.12  3.28  3.06  1.91 
Price changes per product  1.89  0.28  0.01  0.02  0.03  0.45 
Share of products with a price change  0.373  0.089  0.008  0.020  0.024  0.103 

Notes: The table displays the daily mean for each statistic across five major online retailers. Sample includes major 
brands of  over-the-counter allergy drugs (Allegra, Benadryl, Claritin, Flonase, Nasacort, Xyzal, and Zyrtec) for the 
period April 10, 2018 to October 1, 2019. The price for each product was collected hourly; however, the daily obser-
vations per product are less than 24 due to instances of incomplete data collection.
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the highest frequency. The other retailers show regular patterns of price changes that 
are consistent with each fi rm running a pricing update script at  pre-specifi ed inter-
vals. Retailer C adjusts prices daily between 3 am and 6 am Eastern Time, whereas 
retailers D and E adjust prices weekly just after midnight Eastern Time on Sunday.19

Thus, the fi gure documents stark differences in pricing frequencies among compet-
ing retailers, including weekly, daily, and near “ real-time” pricing technology.

Though fi rms do not use every opportunity to change prices—recall that fi rm 
C changes the prices of less than 1 percent of its products each day—we fi nd the 
consistency in the times that price changes occur as compelling evidence of tech-
nological constraints. Firms face several costs to upgrade their pricing technology, 
including new systems to gather and process  higher-frequency input data, software 
to solve for the optimal  higher-frequency prices, and new hardware that enables 
the algorithms to run at a higher frequency. It is important to note that pricing tech-
nology is not exclusively defi ned by software and hardware. Technology may also 
include managerial or operational constraints that prevent a fi rm from updating a 
price on a more frequent basis. For example,  higher-frequency price changes may 
be inconsistent with a retailer’s marketing strategy or make inventory management 
more challenging. Even if slower fi rms had access to the same hardware and soft-
ware as retailers A or B, it would likely take signifi cant organizational changes to 
enable the fi rms to update their prices as frequently.20

The pricing patterns imply that, for the majority of hours in the week, only a 
subset of fi rms have pricing technology that allows for a price change. Only for 
a brief period once a week, on Sundays, do all fi rms simultaneously set prices. 

 19 Many of the price changes that occur outside of these times are likely due to measurement error.
 20 In addition, some online retailers may be tied to legacy systems designed for  brick-and-mortar stores that 

update prices at a relatively low frequency.

Figure 1. Example Time Series of Prices for Identical Products across Retailers

Notes: The fi gure displays the time series of hourly prices in our dataset for two example products across fi ve retail-
ers. Panel A displays the prices for an  80-count package of Xyzal tablets. Panel B displays the prices for a  70-count 
package of Claritin tablets.
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Figure 2. Heterogeneity in Pricing Technology by Hour of the Week

Notes: The fi gure shows the distribution of price changes by retailer across each hour of the week for all products 
and weeks in our sample. Panels A and B show that retailers A and B update prices in every hour of the week. Panel 
C shows that retailer C updates prices exclusively during morning hours. Panels D and E show that retailers D and 
E primarily update prices early in the morning on Sunday. Hours are reported in Eastern Time.
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Thus, heterogeneous pricing technology is inconsistent with the simultaneous move 
assumption in standard models of competition.

Stylized Fact 2: Retailers with the fastest pricing technology quickly react 
to price changes of slower rivals, consistent with the use of automated pricing 
algorithms.

If algorithms depend on rivals’ prices, then we should expect  high-frequency 
firms to quickly react to price changes by  low-frequency firms.  High-frequency 
firms may change prices for many reasons, including cost shocks, demand shocks, 
and experimentation. In order to isolate the response to rivals’ prices, we analyze 
the timing of price changes by  high-frequency firms in weeks with and without a 
price change by a slower rival. A slow firm may be spurred to change prices due to 
an idiosyncratic cost shock arising from, e.g., shipping delays or low inventory. If 
the faster firm’s algorithm is a function of the slower firm’s prices, we may observe 
additional price changes by the faster firm after the slower firm changes its price.21

To examine the reaction of prices to other firms, we start by taking price changes 
occurring at retailer D, one of the firms with weekly pricing technology, as the 
impulse. We observe 348 price changes in our data occurring between midnight 
and 6 am on Sunday. We partition the weeks into Friday through Thursday blocks, 
giving us a  two-day pre period and a  five-day post period around each price change. 
We then measure cumulative price changes of the same product occurring at rival 
retailers during each week. While retailer D runs their price update script once per 
week, not all prices are updated each week. We capture “treated”  product-weeks in 
which the product changed its price at retailer D and “control” weeks in which the 
product did not change its price, despite the fact that retailer D had the opportunity 
to adjust prices.

Figure 3 plots the cumulative price changes before and after midnight on Sunday 
across each  product-week. The solid line corresponds to treated  product-weeks, 
i.e., weeks in which the price of a particular product changed at retailer D. The 
dashed line corresponds to control  product-weeks that had no price change. The 
solid line is adjusted by the  pre-period difference in rates so that the lines coin-
cide at period −1 (11 pm on Saturday). The gap between the solid line and the 
dashed line is the marginal increase in price changes when a price change occurs 
at retailer D.

Based on Figure 3, it is clear retailers A and B have an increased probability 
of a price change after a price change at retailer D. The fast retailers respond to a 
price change by retailer D within about 48 to 72 hours.22 We do not observe a dif-
ferential increase before price changes by retailer D, providing evidence that the 
faster firms are responding to price changes by slower firms and not just common 
shocks. By the end of the week, the fast retailers realize roughly 20 percent more 
price changes over the baseline. In online Appendix Figure G1, we examine the 

21 If both firms are responding to common shocks (to demand or supply), we would typically expect the price 
changes at the faster firm to happen before those of a slower rival.

22 The delay may reflect the fact that it takes time for the firms to collect and parse rivals’ prices. 
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results for retailer E, the other retailer with weekly pricing technology, and find 
very similar results.

To quantify these effects, we use a  difference-in-difference specification given by

(1)   y it   = β (Pos t h (t)    × PriceChang e w (t)   )  +  γ i,w (t)    +  γ h (t)    +  ε it  , 

where   y it    is an indicator for whether the faster retailer changed its price for product  
i  in hour  t . We use a  48-hour period before and a  72-hour period after the slow firm 
adjusts prices, and we scale the dependent variable by 72 so that the rate change can 
be interpreted as cumulative changes over the  3-day post period.  Pos t h (t)     is an indi-
cator for whether the hour of the week,  h (t)  , is after an opportunity for the slow firm 
to adjust price.  PriceChang e w (t)     is an indicator for whether the slow firm adjusted 
prices in week  w (t)  .23 We include  product-week fixed effects,   γ i,w (t)    , to control for 
 product-specific  time-varying factors that are common across retailers, such as a 
demand shock that causes both retailers to adjust prices, with the faster firm able 
to respond first. Finally, we include  hour-of-week fixed effects,   γ h (t)    , to account for 
 time-varying factors within the week. In this way  β  can be interpreted as the effect 
of the slow retailer’s price change on cumulative price changes by the faster retailer. 
Identification exploits two sources of variation: variation across weeks in which the 
slow firm does or does not adjust the prices for a product and variation within each 
week before and after the opportunity for the slow firm to adjust prices.

Table 2 reports regression results analyzing the response of the faster retailers, 
A and B, to the slower retailers, D and E. Results indicate that when retailer D 
changes the price of a product, retailer A has 0.8 additional price changes for the 
same product within 72 hours. Retailer B has 0.3 additional price changes. Relative 

23 Note that  w (t)   and  h (t)   map the hour  t  to week and hour of the week, respectively.

Figure 3. Price Changes by Fastest Retailers in Response to Price Change by Retailer D

Notes: The figure displays the cumulative price changes for  high-frequency retailers A and B in response to a price 
change occurring at retailer D, which adjusts prices only once per week. The solid line displays the cumulative 
price changes when retailer D changes a price of the same product in that week. The dashed line plots the cumu-
lative price changes when the product at retailer D does not have a price change. The solid line is adjusted by the 
 pre-period difference in rates so that the lines coincide at period −1 (11:00 pm on Saturday).
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to the average number of price changes over the same period—5.7 for retailer A 
and 0.9 for retailer B—the coefficients correspond to a 13 percent and a 34 percent 
increase in the rate of price changes, respectively. Results estimating the effect of a 
price change by retailer E are similar, and all the estimated responses by A and B are 
statistically significant.24

These results imply that the retailers with the most frequent pricing technology, 
A and B, are responding to price changes of lower-frequency rivals within a rela-
tively short period. Given the large number of prices that these firms update and the 
speed at which prices are updated, the results are consistent with the use of auto-
mated pricing algorithms that are a function of rivals’ prices. To the extent that these 
algorithms are updated at lower frequency than prices are adjusted, this implies a 
 short-run commitment to an automated pricing strategy.

Stylized Fact 3: Firms with faster pricing technology have persistently lower 
prices for identical products.

We now examine the relationship between pricing frequency and prices for iden-
tical products across different retailers. By using a  high-frequency pricing algo-
rithm, firms may commit to  best respond to their rivals. As we formalize later, this 
best response is often to undercut rivals’ prices, implying that  high-frequency firms 
set lower prices than slower rivals.

In order to account for differences in product assortment across retailers and over 
time, we regress log prices on indicators for each retailer while controlling for prod-
uct and  hour-day fixed effects. The resulting coefficients reflect the average differ-
ence in (log) price for identical products ( brand-drug-form-variant-size) sold across 
different retailers at the same point in time.

24 Retailer C has few price changes over the period, and we do not find evidence of additional changes by C in 
response to price changes by D and E.

Table 2—Effect of Price Change by Slower Retailers on Price Changes by Faster 
Rivals

Price change by D Price change by E

Retailer A Retailer B Retailer A Retailer B
(1) (2) (3) (4)

  Post h(t)     ×    PriceChange w(t)    0.770  0.319    0.667  0.291 
  (0.207)    (0.109)    (0.189)    (0.127)  

Product  ×  Week fixed effects Yes Yes Yes Yes
Hour of Week fixed effects Yes Yes Yes Yes

Outcome mean 5.709 0.927 5.709 0.927
Observations 1,115,035 353,873 1,115,035 353,873

Notes: Results from OLS regressions in which the outcome is an indicator for whether the 
faster retailer changed its price. We include 48 hours before and 72 hours after each oppor-
tunity for a price change by the slow retailers, which occurs Sunday at midnight. Therefore, 
the sample includes Friday through Wednesday of each week. The outcome is scaled by 72 so 
the rate change can be interpreted as cumulative changes over the 3-day post period. Standard 
errors in parentheses. 
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Table 3 presents the results. Retailer A serves as a baseline, so the coefficients 
reflect the average difference in log price relative to A. Relative to retailer A, 
products are typically sold at a 6.6 percent (0.064 log point) premium at B and a  
9.6  percent (0.092 log point) premium at C. These same products are sold at a sub-
stantial premium at retailers D and E, who have average price differences of 28 
percent and 33 percent, respectively. We observe the same qualitative patterns if we 
vary our estimation sample. Specifications (2) and (4) use observations from the 
most recent three months of the data (July 1, 2019 through October 1, 2019), the 
period with the most stable panel. Specifications (3) and (4) include only products 
sold by all five retailers. The results remain qualitatively similar, though the price 
differences between A and the other retailers increase when we restrict the sample.

We plot the (scaled) coefficients from specification (1) against a measure of pricing 
technology in Figure 4. The  x-axis captures the pricing frequency, which increases 
along the  x-axis. We report the frequency as the median number of hours between 
any pricing update on each website; the axis values are reversed so that superior 
(more frequent) technology is to the right. Firm E has a median approximately equal 
to the number of hours in a week (168), whereas firm A has a median of 1.

The large degree of price dispersion in online markets has largely been attributed 
to search frictions. Yet, the robust correlation between pricing technology and aver-
age prices suggests that pricing technology may play a role.  High-frequency pric-
ing algorithms may allow firms to commit to undercutting slower rivals, softening 
competition and implying retailers with  high-frequency pricing have lower prices in 
equilibrium. One concern with this interpretation is that differences in supply cost, 
and, in particular, shipping and distribution costs, may explain price differences 
across retailers. In online Appendix D we empirically test for differences in shipping 
and distribution costs. We exploit the fact that several of the products in our data 
have identical packaging but different quantities (e.g., 30 tablets or 60 tablets in the 
same bottle). This allows us to decompose price into a component that varies with 

Table 3—Price Differences for Identical Products Relative to Retailer A

(1) (2) (3) (4)
Retailer B  0.064  0.047  0.146  0.117   

  (0.000)    (0.001)    (0.000)    (0.001)  

Retailer C  0.092  0.107  0.171  0.187 
  (0.000)    (0.001)    (0.000)    (0.001)  

Retailer D  0.249  0.289  0.307  0.337 
  (0.000)    (0.001)    (0.000)    (0.001)  

Retailer E  0.284  0.366  0.340 0.419
  (0.000)    (0.001)    (0.000)    (0.001)  

Product fixed effects Yes Yes Yes Yes
Period fixed effects Yes Yes Yes Yes
Sold at all retailers Yes Yes
On or after July 1, 2019 Yes Yes
Observations 3,606,956 677,650 1,186,571 234,696

Notes: Results from OLS regressions in which outcome is log price. Baseline sample in speci-
fication (1) includes all major brands of allergy drugs over the period April 10, 2018 to October 
1, 2019. Coefficients show price difference relative to retailer A. Standard errors in parentheses.
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quantity and a fixed component, which is a proxy for shipping and distribution costs. 
Based on our estimates of the fixed components, shipping and distribution costs are 
not a main driver of price differences across firms. It is important to note that there 
are other reasons why prices could be higher for firms with  low-frequency pricing, 
such as asymmetric demand across retailers. We discuss these issues in our empiri-
cal exercise in Section IVB.

II. Pricing with Differences in Frequency and Commitment

We develop a model of competition where firms can update prices at different 
intervals and choose algorithms that determine future prices. Motivated by our 
observation that retailers update prices at different intervals, we focus in this section 
on cases in which firms have asymmetric technology, in terms of frequency or the 
ability to commit to future pricing strategies. To fix ideas, we provide a duopoly 
example in Section IID. We examine the implications for the adoption of pricing 
technology in Section IIE. In Section III, we consider the model where both firms 
can commit to future pricing strategies.

A. General Setup

We introduce a general setup in which two firms may choose algorithms at dif-
ferent frequencies and those algorithms can, in turn, automatically update prices at 

Figure 4. Price Index for Identical Products by Retailer Pricing Frequency

Notes: The figure displays the relative prices for identical products (Firm A = 100) plotted against the pricing fre-
quency of each retailer. We report the frequency as the median number of hours between pricing updates; 168 hours 
corresponds to updating prices once per week. The relative prices are obtained from the estimated coefficients in 
specification (1) of Table 3.
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different frequencies. While we do not provide results for the general case, it pro-
vides a framework that nests important special cases that we examine in more detail.

Assume that each firm  j  can update prices at  t = 0  and after each interval   T j    
thereafter. We parameterize the pricing frequency of  j  as   γ j   = 1 /  T j   =  a j    θ j   , where   
θ j    indicates the frequency that the algorithm is updated by the firm and   a j    indicates 
the additional frequency that the algorithm sets automated prices. At the time a 
firm updates its algorithm, it may also change its price. For expositional clarity, we 
assume   a j  ,  θ j   ∈ ℕ .

Firms with higher values of   γ j    can update prices more often. For example, 
consider the case where a period is one week. The technology   γ j   =  θ j   = 1  cor-
responds to  price-setting behavior once at the beginning of each week, whereas  
  γ j   =  θ j   = 7  corresponds to daily  price-setting behavior. The technology   θ j   = 1  
and   γ j   =  a j   = 7  corresponds to an algorithm that is updated at the beginning of the 
week and sets automated prices the other six days of the week.

Each firm’s pricing algorithm may be a function of the current price of its rival 
(the “ payoff-relevant” price), though firms may respond with a lag due to differ-
ences in frequency. Formally, an algorithm is a function   p j   =  σ j   (  p ˆ   −jt  ,  x t  )  , where    p ˆ   −jt    
is the most recently observed price of the rival firm.  Nonprice observables, such as 
cost shocks or the entire history of play, may be captured by the state vector,   x t   . One 
can interpret our equilibrium analysis as conditional on any realization of the state; 
therefore, we suppress   x t    in our notation and simply write algorithms as   σ j   (  p ˆ   −j  )  . We 
will show that supracompetitive prices may be sustained in equilibrium even when 
firms’ strategies do not condition on past play.

Each firms’ strategy at  t = 0  consists of   ( p j0  ,  σ j0   ( · ) )  , where   p j0    is the price 
determined while updating the algorithm and   σ j0   ( · )   is the automated rule for future 
updates at frequency   a j   =  γ j   /  θ j   . Updates to the algorithm are determined by   θ j    such 
that firm  j  submits   ( p jt  ,  σ jt   ( · ) )   for each  t ∈  {0, 1 /  θ j  , 2 /  θ j  ,  …}  . The  price-setting 
component to the strategy space reflects the fact that whenever a firm can make a 
revision to its algorithm, its rival does not take the commitment to that algorithm to 
be credible in that instant.

Demand arrives in continuous time, with a measure  m (t)  ≥ 0  of consumers 
arriving at  t . The distribution of consumers is stable over time, so that demand looks 
identical at any instant  t  except for the size of the market. Given demand and prices  
  ( p 1  ,  p 2  )  , firm  j  realizes instantaneous profit flow   π j   ( p 1  ,  p 2  ) m (t)  . We assume the 
profit functions are quasi-concave and have a unique maximum with respect to a 
firm’s own price. We also assume that firms have complete information.25 Firms 
discount the future exponentially at rate  ρ  and have an infinite horizon. Firms choose 
a sequence of prices to maximize profits, conditional on the flow of consumers  m (t)  , 
the profit flows   π j   , and the behavior of the rival firms.26

25 Uncertainty could be incorporated by, for example, letting   π j    denote the expected profit function for firm  j .
26 For example, suppose that   θ 1   = 1 , and let    p ̃   2   (t)   denote the prices of firm 2 over time. Firm 1’s problem can 

be written as

(2)    max  
 { ( p 1t  , σ 1t   ( · ) ) } 

    ∑ 
s=0

  
∞

    ( ∫ 
s
  
s+  1 _  γ 1       e   −ρt   π 1   ( p 1s  ,   p ̃   2   (t) ) m (t)  dt +  ∫ s+  1 _  γ 1    

  
s+1

   e   −ρt   π 1   ( σ 1s   ( · ) ,   p ̃   2   (t) ) m (t)  dt) . 
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Figure  5 illustrates the timing of pricing decisions in period  s  with different 
technologies (  θ j  ,  γ j   ). Solid black markers indicate flexible  price-setting opportuni-
ties, and open circles indicate automated pricing updates determined by   σ j   . Pricing 
 technology for firm  j  is governed by the frequency with which the firm can update 
its algorithm (  θ j   ) and the frequency that it can update prices (  γ j   ). When   γ j   >  θ j    , 
the firm has a  short-run commitment to update prices according to the  previously 
determined algorithm,   σ j   ( · )  .

In this paper, we focus on three special cases of the model. These special cases 
capture the key features of pricing technology that we observe in  real-world envi-
ronments and highlight the similarities between asymmetries in pricing frequency 
and asymmetries in commitment.

• Asymmetric Frequency: First, we consider the case in which there is no com-
mitment but firms differ in their pricing frequency. In this case pricing updates 
correspond to algorithm updates (  γ 1   =  θ 1    and   γ 2   =  θ 2   ). In this game there 
is no opportunity to rely on the pricing rule   σ j   ( · )   to set prices. Panel A of 
Figure 5 provides an example. We discuss this game in Section IIB.

• Asymmetric Commitment: We consider a game with asymmetric commit-
ment, where only one firm has an algorithm that commits to automatic updates 
as a function of its rival’s price (  γ 1   =  θ 1   = 1  and   γ 2   >  θ 2   ). This game closely 
corresponds to the asymmetric frequency model. Panel B of Figure 5 provides 
an example. We discuss this game and the connections to the frequency game 
in Section IIC.

• Symmetric Commitment: We consider a case with symmetric  short-run com-
mitment, which allows us to highlight the role of commitment in algorithmic 
pricing. Panel C of Figure 5 provides an example. We turn our attention to this 
case in Section IIIA.

Figure 5. Timing with Pricing Technology   (θ, γ)  

Notes: The figure shows examples of potential pricing technology. Solid black markers represent opportunities to 
adjust algorithms and update prices. Open circles indicate opportunities to update prices based on the  previously 
determined algorithm. Algorithm updates are governed by  θ , and pricing updates are governed by  γ .
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In each case we restrict attention to Markov perfect equilibria. Because of the syn-
chronous nature of the updates at the beginning of each period, it suffices to analyze 
subgame perfect equilibrium of a  single-period stage game. Using these cases, we 
illustrate how the changes to frequency and commitment brought about by algo-
rithms can lead to higher prices in competitive equilibrium.

The general setup above admits many cases that cannot be neatly summarized 
by a single representation. Panel D of Figure 5 provides an example in which firms 
have periods of staggered pricing and periods where one firm updates a price, 
while the other updates its algorithm. Such cases allow for potentially interesting 
 within-period dynamics in Markov perfect equilibrium.

B. Asymmetric Frequency

We now examine Markov perfect equilibria of the case with asymmetric fre-
quency and no commitment (  γ 1   =  θ 1    and   γ 2   =  θ 2   ). Without loss of generality, let   
γ 1   = 1  so that firm 2 has (weakly) superior technology. As described above, the 
repeated game can be expressed as a sequence of  single-period stage games. We can 
then restrict our attention to subgame perfect equilibrium in each stage game. The 
resulting equilibrium is the unique ( pure-strategy) Markov perfect equilibrium of 
the infinite horizon problem.

Let    p ̃   2   (t)   denote firm 2’s prices over time and   { p 1t  }   denote the sequence of prices 
chosen by firm 1 at each  t =  {0, 1, 2,  …}  . For timing purposes, we assume that   p 1s    
is relevant for demand over the period   (s, s + 1]  . Firm 1’s problem can be written as

(3)   max  
 { p 1t  } 

      ∑ 
s=0

  
∞

    ∫ 
s
  
s+1

   e   −ρt   π 1   ( p 1s  ,   p ̃   2   (t) ) m (t)  dt. 

Because firm 2 can change its price at every point  s ∈  {0, 1,  …, ∞}  , in addition 
to intermediate times, the problem can be expressed as separate  single-period stage 
games where firm 1 chooses   p 1s    at  t = s .

Firm 2’s pricing behavior will have the following two properties in equilibrium: 
(1) firm 2’s price will be constant within each period (despite its ability to update 
prices after each interval  1 /  θ 2   ≤ 1 ), and (2) firm 2’s price will lie along its Bertrand 
 best-response function. The first property is a result of   π 2   ( · )   being  time invariant 
and   p 1    being fixed over the period. The second property arises from the fact that it 
is optimal for firm 2 to price along the Bertrand  best-response function when it is 
pricing simultaneously with its rival  (t = s ) and also in any later pricing update  
(e.g.,  t = s + 1 /  θ 2   ). The Bertrand  best-response function for firm 2 treats   p 1    as 
fixed, which is a Nash equilibrium condition at  t = s  and is literally true at any 
other point when firm 2 can update its price.

We return to firm 1’s problem. Without loss of generality, we focus on the first 
period ( s = 0 ). Let   p 2    now denote the price of firm 2, which is  time invariant within 
the period in equilibrium, and let   R 2   ( p 1  )   denote firm 2’s reaction function. Firm 1 
chooses   p 1   , recognizing that firm 2 can react to its price after a period of  1 /  θ 2   . Firm 
1’s problem can be expressed as

(4)   max   p 1  
     ∫ 

0
    
1 _ 
 θ 2  

     e   −ρt   π 1   ( p 1  ,  p 2  ) m (t)  dt +  ∫   1 _ 
 θ 2  

    
1
    e   −ρt   π 1   ( p 1  ,  R 2   ( p 1  ) ) m (t)  dt. 
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Because the profit flow function is  time invariant, we can write firm 1’s stage 
game problem as

(5)   max   p 1  
       (1 − α)   π 1   ( p 1  ,  p 2  )   


    

 
Simultaneous Pricing

   
Incentive

  

    +   α  π 1   ( p 1  ,  R 2   ( p 1  ) )   


    

 
Sequential Pricing

   
Incentive

  

    ,

where  α =   ( ∫ 0  
1   e   −ρt  m (t)  dt)    

−1
   ∫ 

  1 _ 
 θ 2  

  
  1   e   −ρt  m (t)  dt . The value  1 − α  describes the relative 

weight that firm 1 places on the initial period   (0, 1 /  θ 2  ]  , which is a function of  ρ ,  m (t)  ,  
and   θ 2   .

27 In the initial  price-setting phase, the usual  Nash-in-price logic holds: firm 1 
treats firm 2’s price as given over the period   (0, 1 /  θ 2  ]  . After  t = 1 /  θ 2   , firm 1 recog-
nizes that firm 2 will price optimally against its chosen price when it has the opportu-
nity to update. Therefore, the sequential pricing logic holds in this second phase.

There are two special cases of this pricing model that we now highlight. When  
α = 0 , firm 1 considers only the current price of firm 2. Roughly speaking, firm 
1 places zero weight on the ability of firm 2 to react to a price change by firm 1. 
This can arise when   θ 2   = 1 , i.e., when firms have symmetric technology and set 
prices simultaneously. Thus, our model nests the usual  Bertrand-Nash equilibrium 
assumption that firms set prices while holding fixed the prices of rivals.

The second special case is when  α = 1 . In this case firm 1 only considers its 
profits after firm 2 has a chance to update its price. Roughly speaking, firm 1 fully 
internalizes the reaction of its rival. This can arise when   θ 2   → ∞ , i.e., when firm 2 
has much faster pricing technology than firm 1. The result is equivalent to a sequen-
tial pricing model, where first firm 1 chooses a price and then is followed by firm 
2. In this way our model provides a foundation for the sequential pricing game—
i.e., the Stackelberg pricing model—analyzed in the theory literature but rarely in 
applied work.

Depending on the underlying parameters, the model can capture both simulta-
neous and sequential  price-setting behavior. More generally, the asymmetric tech-
nology allowed for in our model provides a foundation for a rich set of equilibrium 
outcomes that capture a mix of the incentives in these games. We now provide our 
first proposition, which describes the set of equilibrium outcomes for any value of  α .

PROPOSITION 1: In the pricing frequency game, the equilibrium prices will lie on 
the faster firm’s Bertrand  best-response function between the Bertrand equilibrium 
and the sequential pricing equilibrium.

PROOF:
We have established that firm 2’s price will lie along its Bertrand  best-response 

function, as it always treats firm 1’s price as given. When  α = 0 , the problem is 
equivalent to a simultaneous Bertrand pricing game. Note that this is obtained when   
θ 2   = 1 , in which case the game corresponds exactly to simultaneous price setting. 
Denote the optimal price in this game   p  1  

B  . When  α = 1 , the game is equivalent to a 

27 When the stage game interval is small, it is reasonable to assume that demand arrives uniformly and that  
 ρ = 0 , in which case we have the simple expression  α =   

 θ 2   − 1
 _ 

 θ 2  
   .
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sequential  price-setting game, where firm 1 is the leader and firm 2 is the follower, 
with optimal price   p  1  

S  . Because the profit function is quasi-concave, the price that 
maximizes the weighted sum of   π 1   ( p 1  ,  p 2  )   and   π 1   ( p 1  ,  R 2   ( p 1  ) )   lies in between   p  1  

B   
and   p  1  

S  . ∎

Figure 6 illustrates the equilibrium of the game. When firms are very impatient 
or most consumers arrive before firm 2 can update its price, the equilibrium will 
resemble Bertrand (  p   B  ). When firms are patient and all consumers arrive after 
firm 2 can update its price, the equilibrium resembles sequential price setting  
(  p   S  ). The equilibrium prices   p   F   can fall anywhere between these points, depend-
ing on  m (t)  ,   θ 2   ,  ρ , and the profit functions. Note that   p   F   is not necessarily a linear 
combination of   p   B   and   p   S  ; it is in the figure because the  best-response function is  
linear.

We conclude this section by showing that higher prices resulting from asymmet-
ric pricing frequency are a general result for a large class of problems. Consider a 
typical case where the products are substitutes (i.e.,    

∂  q 1   _ ∂  p 2  
   > 0 ) and prices are strate-

gic complements (with  upward-sloping  best-response functions in the  price-setting 

game,    
∂  R 2   _ ∂  p 1  

   > 0 ). Under these conditions, the sequential  price-setting equilibrium 

will have higher prices than the Bertrand equilibrium. Thus, we obtain our second 
proposition.

Figure 6. Equilibrium in the Asymmetric Frequency Game

Notes: The figure plots the  best-response functions   R 1   ( · )   and   R 2   ( · )   for simultaneous price competition with differ-
entiated products. The intersection of these functions produces the  Bertrand-Nash equilibrium   ( p  1  

B ,  p  2  
B )  . The point  

  ( p  1  
S ,  p  2  

S )   indicates the equilibrium of the sequential pricing game. The point   ( p  1  
F ,  p  2  

F )   is the equilibrium of a pricing 
frequency game, which lies between   ( p  1  

B ,  p  2  
B )   and   ( p  1  

S ,  p  2  
S )  .
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PROPOSITION 2: Suppose firms produce substitute goods and prices are strategic 
complements. In the pricing frequency game, both firms realize higher prices com-
pared to the simultaneous  price-setting ( Bertrand-Nash) equilibrium.

PROOF:
Above, we have demonstrated that firm 1’s price lies between the Bertrand price   

p  1  
B   and the sequential equilibrium price   p  1  

S  . It suffices to show that   p  1  
B  <  p  1  

S  , in 
which case the optimal price lies on   [ p  1  

B ,  p  1  
S ]  .

Consider firm 1’s  first-order condition to maximize profits ( π ):

(6)    
d π 1   ____ 
d p 1  

    =    
 ∂π 1   ____ ∂ p 1  

    +    
 ∂π 1   ____ ∂ p 2  

       
 ∂p 2   ____ ∂ p 1  

    = 0.

In the simultaneous  price-setting equilibrium, firm 1 takes firm 2’s price 
as given (   ∂  p 2   _ ∂  p 1  

   = 0 ), and    
∂  π 1   _ ∂  p 1  

   = 0 . In the sequential game firm 1 recognizes 

that    
∂  p 2   _ ∂  p 1  

   =   
∂  R 2   _ ∂  p 1  

   > 0  (by strategic complementarity) and    
∂  π 1   _ ∂  p 2  

   > 0  (because the 

products are substitutes). Therefore, relative to the  Bertrand-Nash prices, firm 1 
has an incentive to raise its price in the sequential game:    

d  π 1   _ 
d  p 1  

   > 0 . Firm 1’s opti-
mal price will be strictly greater than   p  1  

B   when  α > 0  and the profit function is  
 well behaved. Higher prices for both firms result from strategic complementarity. ∎

In typical models of differentiated products, prices are strategic complements 
(Tirole 1988). If prices are instead strategic substitutes, then the equilibrium will 
have one firm with higher prices and one firm with lower prices, and the net effect 
on prices may be ambiguous.

C. Asymmetric Commitment

We now consider the asymmetric commitment game. Without loss of generality, 
we assume that firm 2 can, through its algorithm, commit to future price changes 
that depend on firm 1’s price. We assume that firm 1 does not have this capability, 
though, in general, our model allows firm 1 to have an algorithm that responds to 
demand shocks and cost shocks, or other observables. In the absence of such fea-
tures, i.e., when demand is stable, its algorithm reduces to standard  price-setting 
behavior. The asymmetric game is of particular interest given the differences in the 
ability of firms to monitor rivals and adjust prices documented in Section I.

The asymmetric commitment game is a case of the general model with  
  θ 1   = 1 ,   γ 1   = 1 ,   θ 2   = 1 , and   γ 2   > 1 . The model differs from the asymmetric fre-
quency game by allowing the firm with superior technology to commit to a pricing 
function. As described previously, we can focus our attention on subgame perfect 
equilibrium for each  single-period stage game.

Conditional on firm 2’s strategy   ( p 2  ,  σ 2  )  , firm 1’s problem in the first period can 
be expressed as

(7)   max   p 1  
     ∫ 

0
    
1 _  γ 2       e   −ρt   π 1   ( p 1  ,  p 2  ) m (t)  dt +  ∫   1 _  γ 2    

  
1
    e   −ρt   π 1   ( p 1  ,  σ 2   ( p 1  ) ) m (t)  dt. 
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We can write firm 1’s stage game problem as a weighted average of the period 
before firm 2’s algorithm adjust price,   (0, 1 /  γ 2  ]  , and the  post-update period,  
  (1 /  γ 2  , 1]  :

(8)   max   p 1  
    (1 − α)   π 1   ( p 1  ,  p 2  )  + α  π 1   ( p 1  ,  σ 2   ( p 1  ) )  ,

where  α =   ( ∫ 0  
1   e   −ρt  m (t)  dt)    

−1
   ∫ 

  1 _  γ 2    
  1   e   −ρt  m (t)  dt . In the asymmetric commitment 

game,   σ 2    depends on   p 1   . The duration    1 _  γ 2      represents the time lag between firm 1’s 
pricing decision and the response of the algorithm by firm 2.

As in the asymmetric frequency case, the model provides an incentive for firm 1 
to deviate from the competitive price. As long as  ∂  σ 2   ( p 1  )  / ∂  p 1   ≠ 0 , then firm 1 will 
not set a price consistent with its Bertrand  best-response function.

In this game, it is a (weakly) dominant strategy for   σ 2    to mirror firm 2’s 
 best-response function. We use this result to highlight a special equilibrium where 
firm 2 submits its  best-response function.

PROPOSITION 3: There exists an equilibrium to the asymmetric commitment game 
in which the second firm submits its  best-response function as its algorithm. This 
strategy is weakly dominant. The first firm submits a price that maximizes its own 
profit along the second firm’s  best-response function.

It is readily apparent that no profitable deviation exists. The firm that sub-
mits a  price-dependent algorithm cannot do better than submitting its Bertrand 
 best-response function as its algorithm, regardless of the price chosen by firm 1. 
Thus, this is the unique equilibrium after eliminating weakly dominated strate-
gies.28 At this equilibrium, equation (8) is equivalent to (5). Thus, the asymmetric 
commitment game mirrors the asymmetry pricing frequency game from Section II. 
In particular, the asymmetric commitment game obtains an identical equilibrium to 
the asymmetric frequency game when firm 2 chooses this weakly dominant strategy 
and has the same pricing frequency (  γ 2   ). Indeed, we present our second result for 
this section as a corollary to Proposition 2.

COROLLARY: When firms produce substitute goods and prices are strategic 
complements, then, in the asymmetric equilibrium where one firm submits its 
 best-response function as its algorithm, both firms realize higher prices compared 
to the  price-setting ( Bertrand-Nash) equilibrium.

We have shown that asymmetries in pricing technologies are sufficient to 
generate higher prices than those in the simultaneous  price-setting equilibrium. 
The results from this section highlight a potentially surprising result: asymme-
tries arising from either frequency or commitment generate the same outcomes 
in  equilibrium. Thus, understanding the exact nature of the pricing strategies may 

28 There are many Nash equilibria where firm 2 has an algorithm that, local to the equilibrium, maps to the 
 best-response function. There are fewer limitations on how the algorithm looks away from the equilibrium.
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matter less than accounting for asymmetries. One can model a firm with a supe-
rior algorithm that conditions its rival’s price as simply having the ability to update 
prices more frequently.

As we show in Section III, the parallels between frequency and commitment fall 
short when both firms adopt algorithms that enable  short-run commitment. In the 
frequency game symmetric technology leads uniquely to Bertrand prices. By con-
trast, when both firms have algorithms with  short-run commitment, firms are able to 
realize higher prices and profits than the Bertrand equilibrium even when firms have 
symmetric technology.

D. Duopoly Example

We have described above conditions under which a dynamic game of price com-
petition with asymmetric pricing frequency or commitment can be broken down 
into  single-period stage games. We now provide an example to help fix ideas. In this 
game firms compete for demand over a single period. Each firm produces a single 
product and sets prices to maximize profits. Firms initially set prices at the begin-
ning of the period and, depending on the technology, can update prices throughout 
the period.

We assume that demand is such that products are (imperfect) substitutes and prices 
are strategic complements. In particular, we use a variant of the Hotelling (1929) 
model, with fixed locations and an outside option.29 Where the utility from both 
goods is positive, the (local) demand for each good has the convenient linear form

(9)   q j   (t)  = 1 −  p j   +  p −j  . 

We assume that marginal costs are zero, and we use the fact that consumers can 
choose to not buy from either firm to pin down the collusive price.

As above, firm 1 sets its price once at the beginning of each period, whereas firm 
2 can update its price at a frequency of   γ 2   ∈ ℕ , corresponding to elapsed intervals 
of   T 2   = 1 /  γ 2   .

30 Firm 2’s price will lie along its  best-response function. Firm 1 will 
internalize the reaction by firm 2, choosing its price to maximize the profit function 
given by equation (5). In this example equilibrium prices are given by

(10)   p 1   =   3 _ 
3 − α   

   p 2   =   6 − α _ 
6 − 2α  , 

where  α =   ( ∫ 0  
1   e   −ρt  m (t)  dt)    

−1
   ∫ 

  1 _  γ 2    
  1   e   −ρt  m (t)  dt . In general, prices depend on the rel-

ative level of technology   γ 2   , the discount rate  ρ , and the arrival rate of consumers  

29 Each consumer  i  receives utility  v  from consuming the good and has disutility of  τ  d ij    for the distance   d ij    they 
travel to purchase from firm  j . We set  v = 2  and  τ = 1 . Utility is linear in income and is normalized so that the 
marginal utility of income is one. Consumer locations are uniformly distributed, and the value of not purchasing is 
normalized to have zero utility. This yields   q j   (t)  =   1 _ 2   m (t)  (1 −  p j   +  p −j  ) .  We assume   ∫ 0  

1  m (t)  dt = 2 .
30 The differences may arise from asymmetric frequency or asymmetric commitment.
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 m (t)  .31 Note that, even with linear demand, equilibrium prices may have a nonlinear 
relationship with  α  or   γ 2   .

To illustrate the impact of pricing technology in this example, we consider three 
cases. First, consider the standard case where firms have symmetric technology, i.e.,   
γ 1   =  γ 2   = 1 . This corresponds conceptually to a game in which firms use human 
agents to set prices. In this case  α = 0 , and thus equilibrium prices,   p 1   =  p 2   = 1 ,  
and profits,   π 1   =  π 2   = 1 , are equivalent to the simultaneous  Bertrand-Nash 
equilibrium.

Now consider the case in which firm 2 adopts new pricing technology and is able 
to adjust prices at a higher frequency than firm 1. This implies that   γ 2   > 1  and  
α > 0 . From equation (10), we can see that firm 1 and firm 2 increase their prices, 
but firm 2 chooses a lower price than firm 1. This result has an intuitive logic: firm 
2 commits to “undercut” the price of firm 1, maximizing its own profits conditional 
on its rival’s price. This softens firm 1’s incentive to compete on price. For example, 
when  α =   1 _ 2    (which may correspond to   γ 2   = 2 ), firm 1 chooses a price of  1.2  and 
firm 2 chooses a price of  1.1 . Firm 1 loses market share to firm 2, as equilibrium 
quantities are   (0.9, 1.1)  , but profits are   (1.08, 1.21)  , which are higher for both firms 
than in the Bertrand equilibrium.

Finally, consider the case in which firm 2’s technology is much more advanced, 
allowing them to update prices “in real time.” In our model, this corresponds to   
γ 2   → ∞  and  α = 1 . Firm 1 now fully internalizes the reaction of firm 2 and 
chooses a price of  1.5 . This leads firm 2 to price at  1.25 . Quantities are   (0.75, 1.25)  , 
and profits are   (1.125, 1.5625)  , resulting in an equivalent outcome to the sequential 
(Stackelberg) pricing game.

The  Bertrand-Nash logic uses a dynamic metaphor to rule out the above out-
comes: if firm 2’s price is fixed at either  1.1  or  1.25 , firm 1 has a unilateral incentive 
to reduce prices, which would then induce a reaction by firm 2, and so on until the 
 Bertrand-Nash equilibrium is obtained. Though both firms may recognize that they 
would be better off by not undercutting the competitor, they cannot credibly commit 
not to (especially in a  one-shot game). However, since firm 2 is able to undercut firm 
1’s price through more frequent pricing, firm 1 is able to internalize firm 2’s reaction 
and maintain prices that are above the Bertrand equilibrium. In this way the model 
provides a foundation for commitment; such commitment is necessary to generate 
higher prices than the Bertrand game.

E. Endogenous Pricing Technology

We have characterized pricing games in which firms may differ in their pricing 
technologies. In the frequency game (  γ j   =  θ j   ), asymmetry is essential to generat-
ing higher prices. If firm 1 adopts technology that enables it to update prices at the 
same frequency as firm 2, then the equilibrium prices return to the  Bertrand-Nash 

31 When demand arrives uniformly throughout the period and  ρ = 0 , we can represent equilibrium prices as 

functions of the faster firms technology,   γ 2   :   p 1   =   
3  γ 2   _ 1 + 2  γ 2  

    and   p 2   =   
1 + 5  γ 2   _ 2 + 4  γ 2  

   .
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equilibrium. For this reason, firm 1 has a disincentive to upgrade its technology to 
match that of firm 2. Thus, when firms can choose pricing frequency, asymmetric 
frequencies are the equilibrium outcome.

To make things concrete, consider the duopoly example above where pricing fre-
quency is either slow (  θ j   = 1 ) or fast (  θ j   = 2 ) and  α =   1 _ 2   . If both firms choose 
slow technology, they each receive profits   (1, 1)  . If only one firm chooses the fast 
technology, profits are   (1.08, 1.21)  , with more profits for the  fast-technology firm. 
If both firms choose fast technology, profits are again   (1, 1)  . When both firms have 
slow technology, one firm is willing to pay up to 21 percent of its profits to upgrade 
to fast technology. Conversely, when both firms are endowed with fast technology, 
one firm would be willing to pay up to 8 percent of its profits to switch to the slower 
technology, even though this gives even greater profits to its rival.

We develop this more formally by modeling a  first-stage adoption decision in 
Appendix A, but the result is quite intuitive. Whenever firms choose the same pricing 
frequency, Bertrand prices result. Each firm has a unilateral incentive to move away 
from symmetric technology, and they would do so if the cost to change technology 
were not prohibitively high. A firm may adopt costly technology even if its rival 
gains more from the outcome, as the firm prefers this outcome to the world in which 
neither firm adopts. Conversely, a firm may even pay to downgrade its technology 
to avoid the Bertrand outcome. In other words, firms may be willing to disadvantage 
themselves relative to their rivals to gain the benefits of softened price competition. 
For these reasons, we might not expect simultaneous  price-setting behavior to hold 
in equilibrium.32

We have shown in Section I that, consistent with the incentives described above, 
asymmetric pricing technology is a key feature of major online retailers. In other 
settings factors outside of the model may allow firms to maintain symmetric fre-
quencies in equilibrium, such as the benefits of adapting to  time-varying demand 
conditions ( so-called “dynamic pricing”) or  market-specific technological con-
straints that limit the frequency of price changes.

III. Competition among Automated  High-Frequency Algorithms

In this section, we consider an environment in which all firms have automated 
pricing updates that can depend on the prices of rivals. This case may be  increasingly 
relevant as algorithms become more widespread. We show how simple linear algo-
rithms can support supracompetitive prices in Markov perfect equilibrium. In gen-
eral, algorithms that depend on rivals’ prices do not yield competitive (Bertrand) 
prices in equilibrium.

A. Symmetric Commitment Technology

Suppose that firm 1 and firm 2 can both update their algorithms with equal fre-
quency, which we normalize to one (  θ 1   =  θ 2   = 1 ). Firms are also able to commit 

32 Hamilton and Slutsky (1990) show similar incentives in a  two-stage game where firms first choose whether 
to move first or second. They do not address how a firm may commit to only moving once.
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to an algorithmic pricing rule for future price updates, which occur simultaneously, 
with   γ 1   =  γ 2   = γ . Thus, initial  price-setting behavior determines prices until  
t = 1/γ , after which the algorithms determine prices. For expositional clarity, we 
assume that there is no mass point in  m (t)   at  t = 1/γ  and that algorithms instan-
taneously converge to the “ steady-state” prices, so the transition has no impact on 
profits. In other words, we allow the dynamic process of tâtonnement to play out in 
every instant.33

Without loss of generality, we consider the first period,  t ∈  (0, 1]  . As before, 
we can write firm 1’s stage game problem as a weighted average of the  pre-update 
period   (0, 1/γ]   and the  post-update period   (1/γ, 1]  :

(11)   max   p 1  , σ 1  
    (1 − α)   π 1   ( p 1  ,  p 2  )  + α  π 1   ( σ 1  ,  σ 2  )  ,

where  α =   ( ∫ 0  
1   e   −ρt  m (t)  dt)    

−1
   ∫ 

  1 __ γ  
  1   e   −ρt  m (t)  dt .34 The value  1 − α  describes the rel-

ative weight that firm 1 places on the initial period   (0, 1/γ]  , which is a function of  
 ρ ,  m (t)  , and  γ . In the initial  price-setting phase, the usual  Nash-in-price logic holds: 
firm 1 treats firm 2’s price as given over the period   (0, 1/γ]  . After  t = 1 / γ , firm 1 
recognizes that firm 2’s algorithm will control the pricing updates, and it will choose   
σ 1    optimally with that in mind.

As in the asymmetric game, each firm chooses a strategy that maximizes a 
weighted average of two profit components. As before, the first component is equiv-
alent to the profit function for the Bertrand model. The second component is differ-
ent, as firm 1 choses   σ 1    while taking into account the choice of   σ 2   . To make progress 
on understanding the equilibria of the general setup, we analyze the equilibria of the 
subgame in which firms choose algorithms   ( σ 1  ,  σ 2  )  . We can treat this component as 
a subgame because our setup is equivalent to a model in which firms first choose 
prices at  t = 0  and then choose   ( σ 1  ,  σ 2  )   at  t = 1/γ .

This subgame merits special attention because it captures the equilibrium of the 
full model when both firms have  high-frequency algorithms (as  γ → ∞ ,  α → 1 ).  
We consider the case of  α = 1  to be a fair approximation to price competition 
when both firms have very  high-frequency algorithms. Below, we examine the equi-
libria of this subgame.

B. Competing Algorithms

Symmetric commitment technology yields a competitive (sub)game in which 
 endogenously chosen rival algorithms determine prices. We now define the  one-shot 
game—competition in pricing algorithms—and its equilibrium concept. Firms 

33 Alternatively, one could explicitly model this process over discrete pricing updates determined by  γ . Our 
focus for the symmetric commitment model is when  γ  is large; for this case, the process has no impact on firm 
profits or strategies.

34 The simplification is possible because the profit flow function is  time invariant. The full problem is

   max   p 1  , σ 1  
     ∫ 

0
    
1 _ γ     e   −ρt   π 1   ( p 1  ,  p 2  ) m (t)  dt +  ∫   1 _ γ    

1
   e   −ρt   π 1   ( σ 1  ,  σ 2  ) m (t)  dt. 
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 compete in pricing algorithms by submitting a pricing strategy  σ ( · )  , or “ algorithm,” 
to a market coordinator. The algorithms may condition directly on the prices of 
rivals. The algorithm may also be a function of variables that are observable to the 
firm, but they cannot be functions of other player’s algorithms. This game captures 
price competition when both firms have very  high-frequency algorithms.

After receiving the pricing algorithms, the market coordinator solves the sys-
tem of equations set by the algorithms to determine prices. Based on the general 
model developed above, the market coordinator may be thought of as the process 
of tâtonnement arising from an initial price vector. Without further restrictions, the 
game thus far described may suffer from an indeterminacy problem: there may be 
multiple solutions to the system of equations set by the algorithms. For example, 
consider the case where both firms submit an algorithm of the form

(12)  σ ( p −j  )  =  {   p   C ,  for  p −j   =  p   C    
 p   B ,

  
otherwise

    ,

where   p   C   is the collusive price and   p   B   is the punishment (Bertrand) price. Both  
  ( p   B ,  p   B )   and   ( p   C ,  p   C )   are equilibria of the system, depending on the initial price 
vector.

To resolve the issue of multiple solutions, we provide a modification to the gen-
eral game that results in a unique solution conditional on algorithms. When multiple 
solutions are possible, the market coordinator picks the solution that minimizes the 
profits of the firms. If multiple such solutions exist, the coordinator randomizes 
among them. Effectively, we allow an adversarial market coordinator to choose the 
initial price vector.

RESTRICTION 1 ( Profit-Minimizing Coordinator): In the pricing algorithm game, 
the market coordinator selects the solution to the system of equations determined 
by the algorithms that minimizes joint profits. Formally, the market coordinator 
chooses  p =  ( p 1  ,  p 2  )   to solve

(13)   min  p      ∑ 
j∈ {1,2} 

    π j   ( σ j   ( p −j  ) ,  σ −j   ( p j  ) )  

subject to

   p j   =  σ j   ( p −j  )  ∀ j.

 If no solution exists, all firms earn zero profits.

A second and related issue is that  cooperate-or-punish strategies like the one 
above would raise immediate antitrust concerns if made public. We wish to analyze, 
fundamentally, the impact of algorithmic competition on prices. Do they lead to 
higher prices in the absence of behavior that looks collusive? It is possible for firms 
to employ strategies with discontinuous punishments at the collusive price but that 
generate a unique solution for the coordinator. To remove all “obviously collusive” 
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strategies from consideration, we also require firms to submit strategies that are 
continuous.

RESTRICTION 2 (Continuity): Firms must submit algorithms that are continuous 
functions of rivals’ prices; otherwise, all firms earn zero profits.

These restrictions provide conservative results regarding prices. We tie our own 
hands, eliminating equilibria that mirror typical collusive strategies, in order to 
demonstrate the power of commitment. In the real world these restrictions reflect 
 pro-consumer market mechanisms to discipline firms. These mechanisms may be 
employed by antitrust authorities, savvy consumers, or a platform seeking to maxi-
mize consumer welfare.

We now define the equilibrium concept for the  algorithm-setting game. In equilib-
rium each firm’s algorithm maximizes its own profit, conditional on the algorithms 
submitted by the other firms and subject to a market coordinator that minimizes joint 
profits when multiple solutions to the algorithms exist. We formalize this below.

Equilibrium definition: When firms compete in pricing algorithms, equilibrium 
algorithms   { σ  j  

⁎ }   satisfy

(14)   σ   j  
⁎  =  arg max  

 σ j  | σ  −j  
⁎  

       π j   (  σ j   (  p  −j  
⁎   ),   σ  −j  

⁎   (  p  j  
⁎  )) ∀j

subject to

   p   ⁎   =   arg min  
p∈ P ̃  

        ∑ 
j∈{1,2}

  
 
      π j    (  σ  j  

⁎  (  p −j   ),   σ  −j  
⁎    (  p j   ))

   P ̃    ≡ { p :   p j    =   σ  j  ⁎  (  p −j   ) ∀j},

resulting in equilibrium prices   p   ⁎  =  ( p  1  
⁎ ,  p  2  

⁎ )  .

Even subject to the  profit-minimizing coordinator, many equilibrium strategies 
can be supported. Note that any equilibrium of the pricing algorithm game has the 
following property: in equilibrium no firm can do better by submitting a single price, 
conditional on the algorithms of its rivals.35 Formally,

(15)   π j   ( σ  j  
⁎  ( p  −j  

⁎  ) ,  σ  −j  
⁎   ( p  j  

⁎ ) )  ≥  π j   ( p j  ,  σ  −j  
⁎   ( p  j  

⁎ ) )  ∀  p j  , j. 

Therefore, any equilibrium lies at the intersection of modified  best-response func-
tions for price, where the  best-response functions take into account the algorithms 
of the rivals.

Given the equilibrium concept, we now illustrate some of the similarities and 
differences to the asymmetric commitment game from Section  IIC. Consider 
a scenario in the pricing algorithm game in which firm 1 submits algorithm  

35 As algorithms need not depend on rivals’ prices, the model allows for costless deviations to  price-setting 
behavior.
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  σ 1   ( · )  =  p  1  
S   and firm 2 submits algorithm   σ 2   ( p 1  )  =  R 2   ( p 1  )  , where   p  1  

S   
= arg  max  p 1      π 1   ( p 1  ,  R 2   ( p 1  ) )   and   R 2   ( · )   is firm 2’s  best-response function. Recall that   
p  1  

S   is equivalent to the equilibrium price of the  first-mover in a sequential pricing 
game. As in Section IIC, neither firm can do better with a unilateral deviation. Thus, 
this asymmetric case—where one firm submits the price and the other a function of 
that price—is an equilibrium of a game even when both firms have the technology 
to condition on the prices of rivals.

If both firms instead submitted their  best-response functions from the  price-setting 
game,   σ j   ( p −j  )  =  R j   ( p −j  )  , the unique price vector that would satisfy both algo-
rithms is the Bertrand equilibrium. Thus, as in Section IIC, firm 1 can do strictly 
better by submitting   σ 1   ( · )  =  p  1  

S   instead of   σ 1   ( · )  =  R 1   ( p 2  )  . Therefore,   ( σ 1  ,  σ 2  )   
=  ( R 1  ,  R 2  )   is not an equilibrium of the  algorithm-setting game. This is a central 
negative result of our model.

PROPOSITION 4: When firms compete in a  one-shot game by submitting pric-
ing algorithms, it is (in general) not an equilibrium for each firm to submit their 
 price-setting  best-response function.

PROOF:
By the above reasoning, individual firms can realize a profitable deviation by 

submitting a price that lies along their rival’s  best-response function and results in 
greater profits to the firm. ∎

When firms compete in algorithms, the algorithms will not reflect the  price-setting 
 best-response functions in equilibrium. That is, if any firm’s algorithm depends on 
its rival’s price, the algorithms cannot be “competitive” in equilibrium. Further, if 
any firm adopts an algorithm that depends on a rival’s price, competitive prices are 
not obtained in equilibrium.  Bertrand-Nash prices are possible only when the algo-
rithms do not depend on rivals’ prices.36 This is a straightforward implication of the 
incentives illustrated in the previous section.

Though we can show that all firms choosing Bertrand  best-response functions 
is not an equilibrium, the symmetric commitment game still admits a multitude of 
possible equilibria. To demonstrate this, we further restrict the class of algorithms 
to a special case: algorithms that are linear in other firms’ prices. Even with these 
straightforward algorithms, we can show that many equilibria exist.

PROPOSITION 5: When firms compete in a  one-shot game by submitting pricing 
algorithms, any price vector can be supported by algorithms that are linear func-
tions of rivals’ prices, provided the derivatives of profits with respect to prices exist 
at those prices.

36 For example,   p   B  =  ( p  1  
B ,  p  2  

B )   is obtained in equilibrium if both firms resort to simple  price-setting technology, 
with algorithms   σ j   ( p −j  )  =  p  j  

B  . More generally, when   σ j   ( · )   is differentiable at   p  −j  
B   , a necessary condition to obtain   

p   B   in equilibrium is that  ∂  σ j   ( p −j  )  / ∂  p −j   = 0 ∀ j . Otherwise, the reaction by rivals creates an incentive to deviate 
from the Bertrand price.
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PROOF:
For the  two-firm case, consider the price vector   p ˆ   =  (  p ˆ   1  ,   p ˆ   2  )  . Recall that, in equi-

librium, it must be the case that a firm cannot do better by reverting to  price-setting 
behavior. The  price-setting  first-order condition can be rewritten as

(16)     
d  π j  

 ___ 
d  p j  

   |    p ˆ  

   =   
∂  π j  

 ___ ∂  p j  
   +   

∂  π j  
 ____ ∂  p −j  
      
∂  σ −j   

 _____ ∂  p j  
   |    p ˆ  

   = 0, j = 1, 2 

(17)  ⇒    
∂  σ −j   

 _____ ∂  p j  
   |    p ˆ  

   = −    
 ∂π j  /∂  p j   

 ________ 
 ∂π j  /∂  p −j  

   |    p ˆ  

  , j = 1, 2 .

To support the prices   (  p ˆ   1  ,   p ˆ   2  )   with algorithms that are linear in rivals’ prices, one can 
solve the system of equations given by

(18)    p ˆ   j    =   σ i   (    p ˆ   −j   ) =   a j    +   b j       p ˆ   −j   , j = 1, 2

so that the  first-order conditions hold at   (  p ˆ   1  ,   p ˆ   2  )  . It is apparent that the solution has

(19)   a j    =    p ˆ   j    −   b j       p ˆ   −j   , j = 1, 2

(20)   b j    = −     
 ∂π −j  /∂  p −j   

 ________ 
 ∂π −j  /∂  p j  

   |    p ˆ  

    j = 1, 2.

For the  two-firm case, the system has a unique solution. It is straightforward to 
extend the argument to many firms.37 ∎

Despite this result, we expect algorithms to result in higher prices than the 
 Bertrand-Nash equilibrium for three reasons. First, when algorithms have positive 
slope coefficients on rivals’ prices, higher prices result. Imposing this restriction on 
firms’ choices seems reasonable a priori when prices are strategic complements. In 
other words, prices that are lower than  Bertrand-Nash are supported only when an 
algorithm treats the rival prices as strategic substitutes, despite the complementarity.

Second, many of these equilibria are “ knife-edge” cases. To examine which equi-
libria are, in some sense, more robust, we simulate a simple learning process in 
Appendix B. Firms experiment with algorithms that are linear functions of rivals’ 
prices, updating the parameters if profits increase. From a starting point of  randomly 
chosen algorithms, firms disproportionately arrive at equilibria that are bounded 
from below by their  best-response functions and bounded from above by the profit 
Pareto frontier. Our simulations show that higher prices result.

C. Algorithms, Supracompetitive Prices, and Collusive Prices

We have shown that algorithms—through frequency and commitment—can lead 
to higher prices in competitive equilibrium. We now show that simple algorithms 

37 For example, one solution to the  J -firm problem would be to allow each firm’s algorithm to depend only 
on one other firm’s price:   R j   (p)  =  a j   +  b jk    p k   , where  k = j + 1 ∀ j < J  and  k = 1  if  j = J . The solution is  

  b jk   = −    
∂  π j   / ∂  p j   _ ∂  π j   / ∂  p k  

   |    p ˆ  
    and   a j   =   p ˆ   j   −  b jk    p k   .
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with commitment can obtain fully collusive prices. In other words, joint profit max-
imization can be sustained in Markov perfect equilibrium. We again focus on the 
symmetric commitment game when both firms have very  high-frequency algorithms 
( α → 1 ). In Markov perfect equilibrium  one-shot mechanics prevail so that each 
firm commits to an algorithm that is optimal conditional on the algorithm of its rival.

As discussed above, our restrictions rule out the typical strategies to sus-
tain collusive behavior. However, the collusive outcome can be supported by 
algorithms that satisfy the restrictions. For example, in the model of demand in  
Section IID, the collusive outcome is   ( p 1  ,  p 2  )  =  (  3 _ 2  ,   3 _ 2  )  .38 This is an equilibrium 
with the following strategies:

(21)   σ j   ( p −j  )  = 1 +   1 _ 
3
    p −j  , j = 1, 2. 

It is straightforward to verify that, conditional on these algorithms, no firm wishes 
to deviate in its algorithm and the collusive price results. In fact, the collusive out-
come   p   C  =  ( p  1  

C ,  p  2  
C )   can be achieved in equilibrium in general with simple linear 

algorithms. These algorithms take the form

(22)   σ j   ( p −j  )  =  p  j  
C  +  b j   ( p −j   −  p  −j  

C  ) , j = 1, 2, 

where   b j   = −    
∂  π −j   / ∂  p −j   _ ∂  π −j   / ∂  p j  

   |    p   C 

   , eliminating any incentive for the rival firm ( − j ) to devi-

ate in prices. The intuition behind higher prices from these strategies is similar to 
how  price-matching guarantees might generate higher prices: if a firm (credibly) 
commits to adjust prices in the same direction as its rival, then the rival has a reduced 
incentive to lower its price.39

The previous literature has argued that sophisticated pricing strategies employing 
artificial intelligence can learn to collude. However, when firms simultaneously set 
pricing algorithms with  short-run commitment, simple linear strategies can support 
fully collusive prices. Importantly, these strategies do not rely on the history of 
prices and do not feature “severe” punishments that characterize traditional models 
of collusion (Harrington 2018). Rather, collusive outcomes can be supported by 
marginal changes that, without detailed knowledge of demand, are indistinguishable 
from competitive reaction functions.

Our model of symmetric commitment has parallels with the analysis of conjec-
tural variations. One important distinction is that the conjectural variations litera-
ture has attempted to restrict the set of equilibria to those in which the conjectural 
variations are consistent with the beliefs and actions of the other players (e.g., 
Bresnahan 1981; Kamien and Schwartz 1983; Daughety 1985; Lindh 1992). In the 
equilibria of our model of pricing algorithms, firms’ beliefs are consistent with the 
pricing strategies of other firms, yet any conjectural variation equilibrium may be 

38 See footnote 29 for model details.
39 Note that price matching does not arise in equilibrium in our model given the restrictions. If one firm chooses 

the  price-matching algorithm  σ ( p −j  )  =  p −j   , the other will pick the collusive price. But, conditional on the second 
firm’s price, the first firm will want to deviate along its  best-response function. If both firms choose  price-matching 
algorithms, then the adversarial market coordinator is free to pick any price that delivers the lowest profits.
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supported, regardless of whether it is an equilibrium in consistent conjectures with 
the  price-setting game. Thus, our general model unifies several different pricing 
games (e.g., Bertrand, sequential pricing, conjectural variations) under the same set 
of primitives. We view algorithms as providing a  real-world foundation for many 
classic models of price competition. By nesting these models under a common 
structure, we also provide a framework for firms to choose among different models 
of competition by changing their pricing technology.

IV. Oligopoly Impacts of Algorithmic Competition

In this section, we analyze the competitive impacts of algorithms in oligopoly 
settings. Using a theoretical example, we examine the implications for price levels, 
price dispersion, and merger effects. Motivated by the findings in Section  I, we 
focus on asymmetric technology where some firms can react to price changes of 
rivals through greater pricing frequency or automation. As a first step toward quan-
tifying the potential  real-world impact of algorithmic technology on prices, we then 
perform similar analyses in our empirical setting. We calibrate a stylized model to 
observed prices and shares in our data, and we perform counterfactual exercises 
to measure how prices would change if firms competed via simultaneous Bertrand 
competition.

A. Asymmetric Pricing Technology in Oligopoly

We consider an oligopoly extension of the  two-firm example from Section IID. 
We assume a simple symmetric differentiated demand system given by

(23)   q j   = 1 −  p j   +   1 _ 
N − 1

   ∑ 
k≠j

      p k   

for  N  firms. With marginal costs of 0, the  Bertrand-Nash equilibrium price is   p j   = 1  
for all firms.

We focus on the case where  N = 3 . As in Section II, each firm has technology 
characterized by   ( θ j  ,  γ j  )  . We assume that   θ j   = θ ∀ j  and   γ 3   >  γ 2   >  γ 1   = θ . In 
other words, all firms update their algorithms at the same interval, but each firm has 
a different level of pricing technology: firm 1 has the slowest algorithm, firm 2 has 
an algorithm with more frequent pricing, and firm 3 has superior technology that 
reacts to both firm 1 and firm 2.

In online Appendix E we consider an extension of the model that allows for dif-
ferent levels of product differentiation, and we show that the implications are the 
same.

Effects on Price Levels.—To evaluate the effects on price levels, we assume that 
the differences in pricing frequency are large enough so that the faster  algorithms 
can react before demand is realized by their slower rivals. Effectively, firms with 
superior technology have a  last-mover advantage for price. When the algorithms 
can react faster than demand is realized, any set of technology satisfying   γ 3   
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>  γ 2   >  γ 1    will have equivalent strategic effects. Under these assumptions, the 
firms’  best-response functions are

(24)   R 3   ( p 1  ,  p 2  )  =  arg max  
 p 3  

    ( p 3   − c)  [1 −  p 3   +   1 _ 
2
   ( p 1   +  p 2  ) ]  

   R 2   ( p 1  )  =  arg max  
 p 2  

    ( p 2   − c)  [1 −  p 2   +   1 _ 
2
   ( p 1   +  R 3   ( p 1  ,  p 2  ) ) ]  

   R 1   =  arg max  
 p 1  

    ( p 1   − c)  [1 −  p 1   +   1 _ 
2
   ( R 2   ( p 1  )  +  R 3   ( p 1  ,  R 2   ( p 1  ) ) ) ] . 

Panel A of Figure 7 shows the equilibrium prices that solve the above system of 
equations (black markers). Firm 1, which has the slowest pricing technology, has 
the highest prices. Firm 3, which has the fastest pricing technology, has the lowest 
prices. Consistent with our empirical findings in Section I, prices are monotonically 
decreasing in pricing algorithm frequency. Firms with inferior technology choose 
to compete less aggressively, while firms with superior technology credibly commit 
to offering lower prices. The  Bertrand-Nash equilibrium prices, which would be 
obtained with symmetric  price-setting technology, are plotted with gray markers. 
Because firms in the model are symmetric in everything but pricing technology, all 
three firms charge the same price in the  Bertrand-Nash equilibrium.

All prices in the pricing algorithm equilibrium are higher than those in the 
 Bertrand-Nash equilibrium. Thus, differences in pricing technology can generate 
price dispersion and allow firms to charge higher prices.

Merger Effects.—We use the model to examine how pricing technology affects 
the impacts of mergers. In addition to standard concerns that a merger increases 
market power, a merger may allow a firm with inferior pricing technology to adopt 
the technology of its formal rival. Indeed, incorporating pricing technology has been 

Figure 7. Equilibrium Prices in Oligopoly

Notes: Panel A shows equilibrium prices for the  three-firm oligopoly example. The black markers indicate prices 
for asymmetric pricing technology, where firm 3 has the fastest technology and firm 1 has the slowest. The gray 
markers indicate  Bertrand-Nash prices. Panel B shows the equilibrium prices for each firm after mergers. The case 
in which the slower firms merge (firm 1 and firm 2) is plotted in black, and the case in which the faster firms merge 
(firm 2 and firm 3) is plotted in dark gray. The light gray markers indicate equilibrium prices with Bertrand compe-
tition after a merger of firm 1 and firm 2.
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a motivation for online retail mergers in the past.40 Given that a merger may also 
affect which firms effectively act as leaders and followers in pricing, the effect of 
mergers under algorithmic competition may be quite different than under Bertrand 
 price-setting behavior.

We consider mergers between two of the three firms and assume that the merged 
firm adopts the faster firm’s technology. This gives us two cases: one in which the 
middle firm (firm 2) merges with a slower firm and one in which it merges with a 
faster firm. Because we assume that the merged firm deploys the fastest technology 
across both entities, the latter case is equivalent to the case in which the slowest firm 
merges with the fastest firm.

Panel B of Figure 7 shows the  post-merger equilibrium prices. The black mark-
ers indicate prices after a merger between the firms with slower technology (1 and 
2), and the dark gray markers indicate the prices after a merger between firms with 
faster technology (2 and 3). The light gray markers indicate prices after a merger 
between firms 1 and 2 under Bertrand competition. The equilibrium prices may be 
compared to the  pre-merger prices in panel A, noting that the  y-axis has a different 
scale.

As the figure shows, the  post-merger prices under algorithmic competition are 
uniformly higher than those in Bertrand competition. Mergers generate significant 
incentives to raise prices for both the merged firm and the  non-merging rivals. In 
this example even the prices for the  non-merging rivals (firm 3 in the  1–2 merger 
and firm 1 in the  2–3 merger) are higher than the prices of the merged firm under 
Bertrand competition.

The effects on market average prices are similar whether or not the firm with the 
fastest technology is one of the merging firms. However, the  post-merger patterns 
of price dispersion depend on the pricing technology of the merging firms. When 
slower firms merge, price dispersion across firms is exacerbated. The merged firm 
has the standard incentive to raise prices—i.e., internalizing consumer substitution 
across the two  pre-merger entities—in addition to the incentive to cede lower prices 
to the faster rival. In effect, the middle firm no longer has the incentive or abil-
ity to undercut a slower rival. This yields a greater range of prices relative to the 
 pre-merger prices and relative to the  post-merger Bertrand equilibrium.

Conversely, when the middle firm merges with the faster firm, the standard 
incentive to raise prices is partially offset by the incentive to undercut the slower 
(unmerged) rival. In this example these incentives exactly offset so that the merged 
firm and the rival set identical prices. Thus, a merger between faster firms can reduce 
price dispersion because the reduction in competition will have a greater effect on 
the firms with lower  pre-merger prices.

The above analysis shows that mergers under algorithmic competition can yield 
greater price increases relative to the effects in  Bertrand-Nash equilibrium. However, 
the  post-merger patterns of price dispersion depend on the pricing technology of the 
merging firms. When slower firms merge, price dispersion across firms is exacer-
bated, but a merger between faster firms can yield lower price dispersion.

40 For instance, news reports stressed that the merger between Jet.com and Walmart in 2016 allowed Walmart to 
adopt Jet.com’s pricing technology, a major benefit of the merger for Walmart.

http://Jet.com
http://Jet.com
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B. Counterfactual Effects in Calibrated Model

We now calibrate a stylized demand system to take a first step to quantify the 
potential impact of algorithmic pricing. We generalize the model in Section IVA to 
allow for differentiation across firms with flexible substitution patterns and apply 
the model to the five firms in our sample, taking into account the pricing technology 
of each firm. We then simulate the alternative of Bertrand competition using our 
calibrated model.

Demand and Supply.—We introduce a linear demand system that allows us to 
capture two relevant features of the market we study. First, we allow for flexible 
substitution patterns that reflect heterogeneous demand conditions across retailers. 
Heterogeneity in demand may drive price differences across retailers, and we want 
to allow for this possibility. Second, we wish to capture the  supply-side incentives 
in a tractable way. In algorithmic competition the  supply-side optimization problem 
for one firm may be an input into another firm’s problem. This can render estimation 
and simulation computationally intractable. Our demand model generates analytical 
solutions for both the algorithm game and the simultaneous Bertrand game. This 
allows us to feasibly match the model predictions to the data and simulate alterna-
tive forms of competition.

We assume that demand for retailer  j  is given by

(25)   q j   =   v _ τ    μ j0   +   1 _ 
2
    ∑ 
k≠j,0

     μ jk   −   1 _ τ   
(

 μ j0   +   1 _ 
2
    ∑ 
k≠j,0

     μ jk  )
   p j   +   1 _ 

2τ    ∑ 
k≠j,0

    μ jk    p k  . 

Like the demand system given by equation (23), demand for  j  has an intercept, a 
component that depends on   p j   , and a component that depends on the prices of other 
firms.

This linear demand system captures flexible substitution patterns between any 
pair of firms  j  and  k , depending on the weights   μ jk   . It can be derived from a spatial 
differentiation model in which mass   μ jk    of consumers are located on a line segment 
connecting  j  to  k . Consumers pay a “travel” cost  τ  per unit traveled, representing the 
psychological or hassle costs of visiting each website, in order to purchase a product 
with valuation  v . Relative preferences are captured by a consumer’s location on each 
line segment. Consumers who are closer to  j  have lower travel costs and thus prefer  
j  to  k  at the same price.

In addition to relative locations of consumers within segment, heterogeneity in 
consumer preferences is captured through the distribution of consumers across seg-
ments: for all consumers who could choose product  j , there are a fraction of consum-
ers    

 μ jk  
 _____ 

 ∑  k ′    
 
     μ j k ′    

    who have product  k  as the  next-best option. We also allow for segments 

that link each firm to an outside option with mass   μ j0   , which captures consumers  
who only consider firm  j . These features allow for flexible patterns of horizontal dif-
ferentiation. We present the derivation of the demand system in online Appendix F.

We consider  supply-side assumptions that approximate the observed pricing 
behavior for the five retailers examined in Section IB. Retailers D and E set prices 
simultaneously at the beginning of the week. Given the relative pricing frequency 
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of the other firms and the fact that faster retailers respond quickly to slower retail-
ers, we assume this is followed by retailer C, then B, and, finally, A. The sequence 
can be interpreted as arising from asymmetries in frequency (as in Section IIB) or 
from asymmetric commitment (as in Section IIC). The key assumption is that the 
faster firms can change their prices in response to slower rivals before rivals realize 
meaningful demand. Retailers maximize profits given constant marginal costs,  c . 
This yields a set of  best-response functions analogous to those in equation (24) that 
determine equilibrium prices. A key advantage of the chosen demand system is that 
it admits an analytical solution for prices.

Calibration.—The goal of the calibration exercise is to find demand parameters 
in order to match each retailer’s relative price index and aggregate shares. Each 
firm’s relative price index is calculated by averaging over the price of all products 
and then constructing an index relative to retailer A, as in Figure 4. A key challenge 
in online markets is that market shares for individual products are rarely observed 
by researchers. We construct a proxy for aggregate market shares using the share of 
Google searches for the retailer name and the word “allergy.”41 In order to help val-
idate this measure of market share, we also obtain market shares of online personal 
care products for the retailers from ecommerceDB. Online Appendix Table  G1 
shows that the implied market shares are quite similar. We also assume firms have 
identical marginal costs, which we normalize to one.42  Price-cost margins are deter-
mined by the calibrated prices in the model.

The unknown parameters to be recovered are the value of the product  v , the travel 
cost parameter  τ , and the relative weights on the segments   { μ jk  }  . We parameterize 
the  J  by   (J + 1)   μ  matrix with six parameters:   { m 1  ,  m 2  ,  m 3  ,  m 4  ,  m 5  ,  m 6  }  . We choose 
restrictions that allow asymmetries in demand patterns to explain the price differ-
ences in the data.43 We give each firm a unique mass for the outside option, though 
we set the mass for the outside option for A to zero because A does not have any 
 in-store sales for this market. Thus, we impose that all of A’s marginal customers 
would substitute to one of the other four online retailers at the equilibrium prices.

We use the method of moments to choose the parameters   (v, τ,  { μ jk  } )   that best 
fit the relative prices and shares we observe in the data. We minimize the sum of 

41 We use the average of Google searches for the retailer name alone as well as the retailer name in addition to 
“allergy.” See online Appendix Table G1. The data were obtained from Google Trends. Recent evidence suggests 
that a primary motivation for  brand-specific searches is to navigate to a particular website in lieu of typing in a URL 
(Golden and Horton 2021). The greater the extent that  retailer-specific searches serve this navigational purpose and 
that conversion rates are similar across websites, the better our proxy captures aggregate shares.

42 In the context of allergy drugs, we argue that differences in marginal costs across retailers for identical 
products are relatively small. As in Ellison, Snyder, and Zhang (2018), we take wholesale costs to be common 
across retailers. All five retailers sell large quantities of these brands across online and  brick-and-mortar channels. 
Shipping costs may differ among retailers, but shipping costs are a relatively small portion of the total price. The 
average price ranges from $16 to $27 across retailers, and the products are small and light. We empirically test for 
differences in shipping costs in online Appendix D. Overall, differences in marginal costs are unlikely to generate 
the price differences seen in Figure 4.

43 Specifically, for the slower firms, D and E, we constrain the segment weights so that substitution is symmetric 
to all other retailers:   m 1   =  { μ AD  ,  μ BD  ,  μ CD  ,  μ AE  ,  μ BE  ,  μ CE  }  . The firm with daily pricing, C, has symmetric weights 
with the faster firms,   m 2   =  { μ AC  ,  μ BC  }  . The two fastest firms have a unique weight   m 3   =  μ AB   . We normalize 
the density along the outside option segment for E to equal one, which pins down the value of the distance   D 0   .  
Thus,   ( μ A0  ,  μ B0  ,  μ C0  ,  μ D0  ,  μ E0  )  =  (0,  m 6  ,  m 5  ,  m 4  , 1)  , generating the outside option consumer mass vector  
  (0,  m 6    D 0  ,  m 5    D 0  ,  m 4    D 0  ,  D 0  )  .
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squared deviations from relative average prices, taken from specification (1) of 
Table 3, and relative average shares using our proxy for quantities.44

The calibrated parameters for the value of the product and travel costs are  
v = 5.11  and  τ = 0.67 . The calibrated segment weights are displayed in online 
Appendix Table G2. The parameters imply an equilibrium mean markup of  2.07 .  
Mean realized travel costs are  0.61 . Thus, we estimate that, net of travel costs, 
willingness to pay is roughly twice the equilibrium price. As marginal costs are 
normalized to one, prices may be interpreted as markups (price over cost). The 
calibrated parameters imply reasonable  price-cost margins between 0.46 (retailer A) 
and 0.59 (retailer E). Overall, the model fits the prices and shares quite well. Online 
Appendix Figure G2 shows predicted and actual values for the markups and our 
measure of shares.

Table  4 shows a matrix of elasticity of demand estimates from the model. 
 Own-price elasticities range from  − 1.7  to  − 2.8 , consistent with other estimates 
from online goods (e.g., De los Santos, Hortaçsu, and Wildenbeest 2012). Our esti-
mated  cross-price elasticities indicate that, when the price of a product increases, 
consumers are more likely to substitute toward more similar firms. For example, 
retailer A’s consumers are more likely to substitute to B, and retailer E’s consum-
ers are more likely to substitute to D. Allowing for flexible substitution patterns is 
important; if we had instead assumed symmetric demand, we would not be able to 
rationalize the data.

Counterfactual Effects on Price Levels.—To illustrate the potential impact of pric-
ing algorithms on prices, we use our calibrated model to predict equilibrium prices 
if all firms instead had simultaneous  price-setting technology. The results from the 
counterfactual exercise are presented in Table 5. The first set of columns presents 
counterfactual Bertrand markups, shares, and profits. The second set of columns 
presents the estimated values from the calibration exercise based on observed prices 

44 In calibration we impose a penalty if the parameters result in a firm capturing more than 95 percent of the 
consumers on a given segment. This ensures that the counterfactual simultaneous Bertrand prices have an interior 
solution. The resulting penalty is small, and the constraint does not meaningfully affect our estimates. Our coun-
terfactual effects are robust to alternative share definitions that are based on category revenues or a combination of 
revenues and search data.

Table 4—Own-Price and  Cross-Price Demand Elasticities

Retailer price

Share A B C D E

A −2.18 1.84 0.34 0.10 0.11
B 1.95 −2.83 0.39 0.12 0.12
C 0.71 0.77 −2.18 0.23 0.24
D 0.20 0.22 0.22 −1.77 0.27
E 0.17 0.18 0.18 0.22 −1.72

Notes: The table shows the estimated demand elasticity matrix from 
the calibrated model. Row  j  column  k  corresponds to the elasticity 
of demand for  j  with respect to the price of  k , i.e.,   (∂  q j   / ∂  p k  )  ( p k   /  q j  )  .
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and shares. The third set of columns presents the percent changes of moving from 
the Bertrand equilibrium to the (observed) algorithmic competition equilibrium.

Our model indicates that algorithmic competition increases average prices by 
5.2 percent above the counterfactual Bertrand equilibrium. These price increases 
differ across firms. Firms D and E realize more modest price changes of 1.9 and 1.7 
percent. Based on our calibrated demand parameters, these firms receive a greater 
relative share of consumers from outside segments, rendering their behavior closer 
to that of a (local) monopolist. Competition for customers is more intense between 
the other three firms, which realize price increases between 4.5 and 10.1 percent as 
a result of algorithmic competition.

Because retailer A realizes meaningful increases in both price and quantity as 
a result of algorithmic competition, it sees the largest gain in profits (22 percent). 
Despite a reduction in quantity, retailer B’s price increase is great enough to gener-
ate a 6 percent increase in profits from asymmetric technology. By contrast, retailers 
D and E realize profit gains of about 4 percent from more modest increases in both 
price and quantity. Consistent with the theoretical results of Section  II, all firms 
profit as a result of algorithmic competition.

Our model predicts that algorithmic competition results in a modest decline in 
 market-level quantities of 0.9 percent. This limited substitution to the outside option 
means that effects on total welfare are small (a decline of 0.3 percent). Algorithmic 
competition in our calibrated model serves primarily as a transfer between firms 
and consumers: consumer surplus falls by 4.1 percent, and firm profits increase 
by 9.6 percent. To assign a dollar value to these effects, we can do a rough 
 back-of-the-envelope calculation. These 5 firms have annual  e-commerce revenues 
of approximately $6 billion in the category of Personal Care. If we assume that 
our estimated price effects apply to the entire category, then consumer surplus for 
the category would improve by $300 million annually by moving from algorithmic 
competition to simultaneous Bertrand price setting.

Counterfactual Merger Effects.—We use the calibrated model to examine the 
implications for merger analysis. We consider mergers with firm C, which allows 

Table 5—Counterfactual Effects on Markups and Profits

Simultaneous Bertrand Algorithmic competition Percent change

Firm Markup Share Profit Markup Share Profit Markup Profit

A 1.77 0.282 6.5 1.85 0.314 7.9 4.5 22.0
B 1.81 0.314 7.6 2.00 0.275 8.1 10.1 6.4
C 1.92 0.136 3.8 2.02 0.138 4.2 5.1 11.1
D 2.33 0.121 4.8 2.37 0.124 5.0 1.9 4.5
E 2.41 0.147 6.2 2.45 0.150 6.4 1.7 3.8

Aggregate 1.97 1 28.9 2.07 1 31.7 5.2 9.6

Notes: The table displays the implied markups, shares, and profits from the calibrated model. The first three col-
umns report the counterfactual estimates with simultaneous Bertrand  price-setting behavior. The middle three col-
umns report the predicted values from the model of algorithmic competition that is fitted to the data assuming 
retailer A has the fastest technology and retailers D and E have the slowest. The final two columns report the percent 
changes of moving from simultaneous Bertrand to algorithmic competition. Profits are arbitrarily scaled so that 1 
unit corresponds to $100 million of  e-commerce in the Personal Care category.
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us to consider mergers with faster firms (A and B) and slower firms (D and E). 
Table 6 presents the percent change in price, profits, and consumer surplus under the 
assumption of simultaneous Bertrand  price-setting behavior and under the assump-
tion of competition in pricing algorithms. The table shows that the price effects 
for the merging firm are exacerbated under algorithmic competition. Prices for the 
merged firm increase by an average of 10.9 percent under algorithmic competi-
tion, compared to 5.6 percent under simultaneous Bertrand. Similarly, the merger 
with algorithmic competition yields greater increases in average market prices and 
a larger reduction in consumer surplus.

Though algorithmic competition yields a greater increase in market profits (pro-
ducer surplus)  post-merger, it does not necessarily yield greater profits for the merg-
ing firms. The profits gained by the merged firm from under algorithmic competition 
relative to Bertrand competition are smaller for mergers with B and D and larger for 
mergers with A and E.

The above simulations indicate that algorithmic competition can exacerbate the 
incentive to raise prices  post-merger. On the other hand, it is possible that algorith-
mic competition may make certain mergers less desirable for the merging firms. 
Overall, our results suggest that algorithmic competition raises additional consider-
ations for understanding the impacts of mergers in oligopoly settings.

V. Conclusion

Online markets were initially expected to usher in “frictionless commerce” 
and intensify competition among firms (Ellison and  Ellison 2005). Our results 

Table 6—Counterfactual Effects of Mergers

Simultaneous Bertrand

Merged firm Market Consumer 
surplusPrice Profit Price Profit

Merger with A 7.6 7.2 4.7 8.0 −3.3
Merger with B 7.0 6.9 4.7 7.7 −3.7
Merger with D 3.8 2.4 2.0 3.9 −1.8
Merger with E 4.1 2.5 2.0 4.6 −2.1

Algorithmic competition

Merged firm Market Consumer 
surplusPrice Profit Price Profit

Merger with A 10.8 22.0 8.3 14.6 −6.9
Merger with B 14.5 4.7 7.2 12.6 −6.4
Merger with D 8.7 0.2 3.1 4.9 −2.9
Merger with E 9.6 3.6 4.6 6.2 −4.6

Notes: The table  displays the simulated percent change in price, profit, and consumer sur-
plus due to a merger between each of the four retailers and retailer C. The top panel reports 
the counterfactual estimates comparing  pre-merger outcomes to  post-merger outcomes assum-
ing simultaneous Bertrand  price-setting behavior. The bottom panel reports the counterfac-
tual estimates comparing  pre-merger outcomes to  post-merger outcomes assuming algorithmic 
competition.
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 demonstrate how advances in pricing technology can have the opposite effect, gen-
erating higher prices and exacerbating price dispersion.  High-frequency pricing 
algorithms can soften competition and increase profits in equilibrium, even if the 
firms are otherwise identical. In our theoretical examples and our counterfactual 
simulation, the largest gains accrue to a dominant firm with the most advanced tech-
nology and the largest market share. While standard models often assume symmet-
ric pricing technology across firms, we show that accounting for this asymmetry can 
be quite important.

Our findings suggest that the Bertrand equilibrium may be the exception in online 
markets rather than the rule. This raises new considerations for future policies about 
digital markets, as the potential role of algorithms is much more broad than facili-
tating collusion. As we show, simple pricing algorithms can increase prices in com-
petitive equilibrium and may even obtain the fully collusive outcome. To prevent 
such price increases, policymakers would have to limit the ability of firms to react to 
rivals’ prices.45 One solution would be to prohibit algorithms from directly condi-
tioning on rivals’ prices, while still allowing firms to have frequent price updates as 
a function of other factors, such as demand shocks. Besides prohibiting the behavior, 
policymakers could limit the scraping of rival firms’ prices or restrict the storage of 
recent prices by other firms; either of these policies may be more feasible to imple-
ment and yield similar results.46 However, enforcement measures along these lines 
do not fit neatly into existing regulatory and antitrust frameworks in most countries. 
Thus, the growing use of algorithms raises conceptual and legal challenges that 
merit further consideration.

Though we focus on competitive equilibria, our study also has important impli-
cations for collusion. First, the competitive equilibrium is typically used as “pun-
ishment” in a collusive equilibrium. In our model, pricing algorithms can support 
a competitive equilibrium with higher profits than the Bertrand equilibrium. Thus, 
pricing algorithms can make punishment less severe, reducing the likelihood of col-
lusion. On the other hand, our model explicitly considers the ability of firms to 
increase their pricing frequency. In addition to making collusive strategies more fea-
sible,  high-frequency pricing also gives firms the ability to obtain collusive profits 
with linear,  non-collusive strategies.

Online sales represent an increasing share of many diverse markets, including 
insurance, accommodations, and automobiles, in addition to retail goods. In all of 
these sectors, the shift online coincides with an increased availability of publicly 
posted prices and pricing technology that uses these prices as inputs. Offline mar-
kets are increasingly adopting pricing algorithms as well, and similar issues arise if 
 brick-and-mortar stores adopt these methods. Though we view the issues raised in 
this paper as quite general, there is a large scope for future research that incorporates 

45 In our analysis rivals’ prices play a special role. Retail prices are public and immediately available, allowing 
firms to respond to changes in real time. If firms were prohibited from using rivals’ prices, one could imagine firms 
using algorithms based on rivals’ quantities, inventories, or other factors. However, these data are rarely made 
public at a frequency that would be useful to the algorithm. Furthermore, the use of  rival-specific measures (prices) 
provides firms with several instruments to discipline price competition.

46 Alternatively, policymakers could regulate the frequency with which firms update their algorithms and their 
prices. This could restore simultaneous pricing and limit the ability of rival firms to react. Pricing frequency regu-
lation has been applied to retail gasoline markets in Austria and Australia.
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other features of these markets and examines additional implications of competition 
in pricing algorithms.

Appendix A. Endogenous Pricing Frequency

A. Adoption Game

In this Appendix we provide a  two-stage game in which firms can initially choose 
their pricing technology, before choosing prices. Firms are characterized by pricing 
technology   θ j   ∈  {1, 2, 3,  …,  θ –

  } ,  where a higher value represents superior technol-
ogy and   θ –

    represents the best available technology. Firms can adopt   θ j   = 1  at zero 
cost or pay an adoption cost  A  to choose any other feasible technology. Firms com-
pete in the pricing game after determining their technology.

In the model the profits do not depend directly on the technology each firm has 
but rather on their relative order. Denote the profits for the superior technology firm 
as   π   H  , the profits for the inferior technology firm as   π   D  , and the profits for when they 
have the same technology as   π   S  . Following the results from the main text,   π   H  >  
π   D  >  π   S  . We assume that   π   H  −  π   S  > A  so that it can be profitable for one firm to 
adopt costly technology.

We now characterize equilibria of the game. Without loss of generality, let firm 2 
represent the firm with (weakly) superior technology in equilibrium. To characterize 
the equilibria, there are two relevant cases to consider.

Case 1:   π   H  −  π   D  ≥ A . Under these conditions, a  pure-strategy equilibrium is 
for firm 2 to choose the best available technology (  θ 2   =  θ –   ), while firm 1 chooses   
θ 1   = 1 . It must be profitable for firm 2 to adopt a superior technology, relative to 
symmetric technologies (this is true by assumption), and also firm 2 must choose 
a technology so that firm 1 would not want to “leapfrog” firm 2’s choice. As the 
adoption cost is the same for any technological improvement, firm 2 must choose 
the best possible technology. The firm with superior technology has higher profits.

Case 2:   π   H  −  π   D  < A . The  pure-strategy equilibria are characterized by firm 2 
adopting any technology   θ 2   > 1  and by firm 1 choosing   θ 1   = 1 . Firm 2 is indif-
ferent to the exact level of technology because firm 1 has no incentive to invest in 
superior technology in equilibrium. In fact, the firm with inferior technology has 
higher profits (net of adoption costs) in this scenario. Thus, the firm that adopts 
superior technology is only motivated to do so to break the symmetric outcome, in 
which both realize lower profits. Though it competes more aggressively and realizes 
higher profits in the pricing game, it would prefer to be in firm 1’s position.

The pure-strategy equilibria result in higher prices and higher profits for both 
firms, compared to the simultaneous  price-setting equilibrium. As a corollary, any 
mixed-strategy equilibrium also has higher expected prices and profits than the 
simultaneous  price-setting equilibrium. Firms have a positive profit incentive to 
endogenously sort into asymmetric pricing technologies.

To illustrate this point, consider the  three-by-three  first-stage game where firms 
can choose pricing frequency and adoption is costless ( A = 0 ). Firms know the 
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profits for each subgame when they choose a low frequency, a moderate frequency, 
or a high frequency ( θ ∈  {1, 2, 3}  ). Figure A1 presents the payoffs based on the 
illustrative model in Section  IID when  α = 0.5 . Any scenario where both firms 
choose the same frequency—low, moderate, or high—is not an equilibrium because 
each firm has an incentive to deviate by choosing either a faster or a slower pricing 
technology. The only equilibria of the game are asymmetric, where only one player 
chooses the highest frequency.

B. Adoption with an Initial Endowment of Technology

To further highlight the motivation for firms to make asymmetric choices in tech-
nology, we now consider a variant of the game above where both firms are initially 
endowed with technology   θ   e  > 1 . To change to a different technology, firms pay 
an adoption cost  A  as before, but they may costlessly retain their endowment or cos-
tlessly switch to  θ = 1 . The costs for the initial endowment are sunk, so there is no 
salvage value for the endowed technology.

Without loss of generality, suppose that firms are initially endowed with   θ   e  = 2  . 
If   π   H  −  π   D  ≥ A , then, similarly to Case 1, the equilibrium has firm 2 choosing   θ –   , 
while firm 1 keeps its initial endowment   θ 1   =  θ   e  .47

Now suppose that   π   H  −  π   D  < A , so that surpassing your rival with costly invest-
ments is not profitable. In this scenario the unique  pure-strategy equilibrium is for 
firm 1 to downgrade its technology to   θ 1   = 1  and for firm 2 to maintain its endow-
ment. Here, firms willingly choose inferior technology to generate asymmetry. This 
is profitable for both firms, but it is less profitable for the firm that gives up its initial 
endowment. Perhaps surprisingly, this result holds even when there is some cost to 
downgrade ( a ), provided that the asymmetric outcome is still more profitable for 
firm 1 than the symmetric outcome (  π   D  − a >  π   S  , and also   π   D  − a >  π   H  − A ).

C. Discussion

The simple adoption game highlights a few properties of the price competi-
tion when firms vary in pricing frequency. First, the incentive to have asymmetric 

47 If firm 1 were to costlessly reduce its technology to   θ 1   = 1 , firm 2 would prefer to keep its initial endowment. 
But this is not an equilibrium because firm 1 would then optimally leapfrog firm 2.

Figure A1. Example Pricing Frequency Adoption Game
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 technologies is quite robust. A firm may adopt costly technology even if its rival 
gains more from the outcome, as the firm prefers this outcome to the world in which 
neither firm adopts. A firm may even pay a cost to downgrade its technology if 
the firm and its rival are endowed with similar technology to begin with. Thus, 
though the most salient case for asymmetry is one in which the investing firm gains 
 vis-à-vis its rivals, firms may even be willing to disadvantage themselves relative to 
their rivals to gain the benefits of softened price competition.

The above equilibrium results also apply if technology adoption is costless. Thus, 
if firms can choose their pricing technology at costs that are not prohibitively high, 
then we should not expect simultaneous  price-setting behavior to hold in equilib-
rium. This raises some interesting considerations for empirical researchers, where a 
simultaneous  price-setting behavior is the standard assumption.

When extending the analysis to dynamic settings, the model provides potentially 
interesting interpretations of observed phenomena. In the first case discussed above, 
we have one firm adopting the best available technology and the other firm choos-
ing to not invest at all in costly technology. Thus, this model has the flavor of a 
 one-sided “arms race,” where the superior technology firm  overinvests in technol-
ogy to prevent being bested by its rival. This  overinvestment can be quantified in a 
more general model where the cost of adoption depends on the technology level, 
i.e., as a (weakly increasing) function,  A (θ)  . We omit an exposition of the model 
here, as it can complicate the analysis by eliminating all  pure-strategy equilibria.

Over multiple periods, it would be possible to observe an arms race if the 
 best-available technology were increasing over time and firms maintained their 
technology from the previous period. With an increase in   θ 

–
    from one period to the 

next, firm 1 would find it profitable to leapfrog firm 2, and, if the positions switch, a 
future increase in   θ 

–
    would allow firm 2 to again overtake firm 1.

Appendix B. Equilibrium Selection

In the main text we show that commitment in pricing algorithms can yield many 
equilibria. Despite this multiplicity result, we expect algorithms to result in higher 
prices than the  Bertrand-Nash equilibrium. Here, we highlight one of the reasons: 
many of these equilibria are “ knife-edge” cases. To examine which equilibria are, 
in some sense, more robust, we simulate a simple learning process. We allow firms 
to experiment with linear algorithms, updating the parameters if profits increase. 
From a starting point of  randomly chosen algorithms, firms disproportionately 
arrive at equilibria that are bounded from below by their  best-response functions 
and bounded from above by the profit Pareto frontier. Our simulation shows that 
higher prices result than those of the Bertrand equilibrium.

To test this intuition, we simulate a simple learning process to select equilibria. 
Demand follows the duopoly setup of Section IID, where  γ → ∞ . We allow firms 
to choose linear algorithms:   p jt   =  a jt   +  b jt    p kt   . We initialize each firm with random 
parameters   a j0    and   b j0   . Each period, one ( randomly chosen) firm runs an experiment, 
modifying their parameters:    a ̃   jt+1   =  a jt   +  ε  t  

1   and    b ̃   jt+1   =  b jt   +  ε  t  
2  . If this exper-

iment improves profits, the firm updates their benchmark to the new parameters 
(  ( a jt+1  ,  b jt+1  )  =  (  a ̃   jt+1  ,   b ̃   jt+1  )  ), otherwise, they revert to the  previous  parameters 
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((ajt+1  ,  bjt+1) = (ajt  ,  bjt)). In the simulation we do not allow the parameters to 
become negative.

A “rest point” of this game is an equilibrium, i.e., where no unilateral devia-
tion exists. To fi nd the rest points, we simulate 10,000 experiments in each of 500 
duopoly markets. The resulting prices are displayed in Figure B1. First, we consider 
the asymmetric commitment game, where only fi rm 2 has algorithm technology and 
fi rm 1 has  price-setting technology (b1t = 0 ). Panel A shows that prices in the asym-
metric commitment game, as would be expected, lie along fi rm 2’s  best-response 
function and are (weakly) higher than the simultaneous  Bertrand-Nash equilibrium,   

(1, 1)  . There is a mass at the  Bertrand-Nash equilibrium, at fi rm 1’s optimal choice 
conditional on the  best-response of fi rm 2, and at the joint  profi t-maximizing point 
along fi rm 2’s  best-response function. Some simulations arrive at the  Bertrand-Nash 
equilibrium because fi rm 2 never realizes a more profi table algorithm strategy. The 
second mass point corresponds to the equilibrium of the sequential pricing game.

Panel B shows the resulting prices from the symmetric commitment game in 
which both fi rms have pricing algorithms. The prices are centered around the 
collusive equilibrium,   (1.5, 1.5)  , and lie along the profi t Pareto frontier. The 
 equilibria are bounded by the two fi rms’  best-response functions. Though, in the-
ory, any point in the region between the  best-response functions and the profi t 
Pareto frontier can be sustained as an equilibrium, only 3 out of 500 simulations 
do not yield an equilibrium along the profi t Pareto frontier. Thus, we demonstrate 

Figure B1. Equilibrium Selection with Pricing Algorithms

Notes: The fi gure displays the resulting prices from 500 simulated duopoly markets when fi rms use a simple learn-
ing rule to update their prices or pricing algorithms. Each fi rm will update its algorithm if a random deviation in 
the algorithm parameters improves profi ts. Any stable point in simulation is an equilibrium (no profi table deviation 
exists). Each point displays the prices after 10,000 experiments. Panel A displays the results from the asymmet-
ric commitment game (where fi rm 1 chooses price). Panel B displays the results from the symmetric commitment 
game where both have algorithms. The plotted lines indicate the two  price-setting  best-response functions; their 
intersection is the unique  Bertrand-Nash equilibrium.
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that many equilibria, including the  Bertrand-Nash equilibria, are not particularly 
robust to naïve experimentation.

Our simulation of a simple learning process selects equilibria with higher prices. 
The resulting prices are bounded from below by each firm’s  best-response function 
and bounded from above by the profit Pareto frontier. This is supported by the sim-
ple intuition that firms only have the incentive to adopt these algorithms if it would 
improve profits above the  price-setting equilibrium.
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